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A B S T R A C T

We perform numerical simulations to compare the Berreman matrix method using effective medium results for
an anisotropic material with exact calculations of a multi-layer metallo-dielectric stack using the transfer matrix
method and finite element techniques. Results are given for a wide band of wavelengths and incident angles.
For fixed sample thickness the number of layers is increased to study convergence of the optical characteristics
(transmittance and reflectance). It is shown that the Berreman matrix method with effective medium results
for an anisotropic material provides a fast and reliable estimate of the optical characteristics of the composite
material. The Berreman technique readily leads to the transfer function matrix for propagation in anisotropic
materials.

1. Introduction

Metamaterials are widely known in the field of optics because of
their unique electromagnetic (EM) properties [1–3]. Metamaterials are
artificially engineered structures designed to interact with EM radiation
to achieve exotic material properties such as negative permittivity,
negative permeability, negative refractive index, etc. leading to appli-
cations such as perfect imaging, optical filters, and coatings for special
applications [2]. Such materials can be constructed, for instance, in
the form a multilayered metallo-dielectric (MD) structure comprising
alternating layers of metal and dielectric which can be modeled as
a bulk anisotropic medium using effective medium theory [1]. These
anisotropic metamaterials are believed to display interesting properties,
including negative refraction and super-resolution in the near and/or
far-field [1].

The propagation of EM waves in a medium is determined by its elec-
tric permittivity, 𝜖 and magnetic permeability, 𝜇 [3,4]. In an anisotropic
metamaterial 𝜖 and 𝜇 are tensor quantities [5,6]. The anisotropy in
these materials can be expressed as a diagonal matrix of 𝜖 and 𝜇 with
their principal components having different values [6,7]. Hyperbolic
metamaterials (HMMs) are a form of anisotropic material where the
dielectric tensor elements have opposite signs [7–9]. There are two
types of HMMs which can be distinguished by the signs of the principal
elements of the diagonal permittivity matrix. Important dispersion char-
acteristics of the hyperboloid are determined by whether the medium
dielectric tensor principal components satisfy 𝜖𝑧𝑧 < 0; 𝜖𝑥𝑥, 𝜖𝑦𝑦 > 0 or
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𝜖𝑥𝑥, 𝜖𝑦𝑦 < 0; 𝜖𝑧𝑧 > 0 [10]. Negative refraction can be achieved through
the hyperbolic dispersion of these materials [11,12].

Anisotropic metamaterials are fabricated as a stack comprising alter-
nating layers of metal and dielectric films, often referred to as metallo-
dielectrics [2,6]. As shown by Argyropoulos et al. [1] for a hypothetical
case, and using effective medium theory, the MD stack can be repre-
sented as a homogeneous anisotropic bulk material where the permit-
tivities along the principal diagonal can have opposite signs owing to
the negative (real part of the) permittivity of the metal. Conceptually,
the reason for the anisotropy along the nominal direction of propagation
z can be attributed to the (periodic) changes in the permittivities along
this direction. The physical process that allows a layered metamaterial
to mimic an anisotropic material is that surface plasmons are supported
at an interface where the permittivity changes sign. When the metal
permittivity is negative, the sign change occurs at every interface; the
wave is transmitted via coupled surface plasmons [13]. MD stacks have
potential applications, such as super-resolution with sub-wavelength
focusing, negative refraction, harmonic generation, photonic bandgap
structures and filters, sensing etc. [1,2,14–17].

Typically, EM propagation through MD stacks can be analyzed using
the transfer matrix method (TMM) which is formulated for plane wave
incidence, applied to the multilayered structure, or by using numerical
methods, such as a finite element method, e.g. COMSOL. However,
using effective medium theory and considering the MD stack to be an
inhomogeneous bulk material, it is possible to use simpler and faster
methods, such as the Berreman matrix method (BMM) to approximately
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find the EM fields inside the structure and determine the transmission
and reflection coefficients. Such an approach may be advantageous
during the design of such MD stacks, where, say, the tuning behavior as
a function of the wavelength or angle of incidence can be preliminarily
assessed quickly using BMM. In this paper, illustrative examples of EM
analysis of such structures using BMM are given and compared with
results from TMM and COMSOL. Although it has been shown that the
effective permittivity of such structures can be determined to within
the Wiener bounds [18], it is instructive to determine how accurately
effective medium theory accurately determines the transmittance and
reflectance from MD stacks structures through direct simulations. It is
concluded that BMM with effective medium results for an anisotropic
material provides a fast and reliable estimate of the optical characteris-
tics of the composite material. In the process, the concept of the angular
plane wave matrix for propagation in anisotropic materials using BMM
is introduced, and its application to beam propagation (including 𝑧-
polarized beams) in such materials is discussed.

The organization of the paper is as follows. In Section 2, EM
propagation using BMM in a bulk medium modeled as an effective
medium is summarized, with emphasis on TM polarization and hy-
perbolic metamaterials. The concept of the transfer function matrix
for propagation in such anisotropic metamaterials is introduced. In
Section 3, TMM is summarized, along with a scheme to compare TMM
with BMM for MD stacks. In Section 4, numerical results of BMM
and TMM along with COMSOL are presented for transmittance and
reflectance of MD stacks, especially those with dimensions which give
rise to hyperbolic dispersion when modeled as an effective medium. It is
shown that BMM provides a simple and fast way to get a general estimate
of the spectral properties of such stacks for possible applications such
as tunable filters, which can aid in the design of such structures for a
given application. At the same time, through numerical simulations, it is
shown why and how TMM results converge to that obtained from BMM
using effective medium theory, as is expected from theoretical limits.
Section 5 concludes the paper.

2. EM analysis using BMM for effective medium

As stated earlier, a metamaterial with hyperbolic dispersion can be
built, for instance, as a multilayer structure consists of alternating layers
of dielectric and metal (see Fig. 1(a)), and modeled as an anisotropic
bulk medium BM (see Fig. 1(b)), based on the effective medium the-
ory. Effective medium theory is a consequence of the homogenization
technique [19,20]. This technique is based on the averaging of the EM
field in the unit cell of metamaterial and can be applied to multilayered
periodic systems. In addition, mean-field homogenization theories can
also explain the effective parameters from the distribution of funda-
mental metamaterial enclosures, such as in Lorentz, Clausius–Mossotti,
and Maxwell–Garnett approximations [18,19]. Rapidly-varying spatial
scales and spatial periodicity are the two basic ingredients for homoge-
nization approach of a metamaterial [20]. If the multilayered MD stack
system, such as that shown in Fig. 1, is indeed periodic (i.e., the number

of layers approaches infinity) and the metallo-dielectric patterning has
a spatial scale which is much smaller than radiation wavelength, then
one can treat the system as a bulk anisotropic medium with an effective
dielectric permittivity tensor [1,13,21]
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where 𝑑1 and 𝑑2 are the thickness of the dielectric and metal layers,
respectively, 𝜖0 is the permittivity of free space and 𝜖1 = 𝑛21, 𝜖2 = 𝑛22 are
relative permittivities of the dielectric and the metal, respectively. For
future reference, it is useful to note that as long as the ratio 𝑑1∕𝑑2 is
maintained a constant, the values of 𝜖𝑥𝑥 and 𝜖𝑧𝑧 remain unchanged. The
dispersion relation for this anisotropic metamaterial is
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where 𝑘𝑥 and 𝑘𝑧 are the transverse and longitudinal components of the
wave vector. If the condition 𝜖𝑧𝑧 < 0 and 𝜖𝑥𝑥 > 0, the dispersion relation
is hyperbolic [1]. It is remarked that assuming real values for 𝜖1 and 𝜖2,
hyperbolic dispersion can be obtained when the condition 𝜖1

𝜖2
≥ − 𝑑1

𝑑2
is

satisfied [1,22,23].
We consider a plane wave obliquely incident from an isotropic

ambient medium (assumed to be free space) onto the anisotropic
medium, finally exiting into free space once again. It is remarked that
this technique can be readily extended to the case of arbitrary incident
and transmitted media. The plane of incidence is the x–z plane, and we
assume there is no variation in y direction and wave is propagating in
the x–z direction. The bounds of the effective medium are 𝑧 = [0, 𝐿]. The
x- variation of all fields in all regions (a,b,c) is in the form exp(−𝑗𝑘𝑥𝑥)
where 𝑘𝑥 = 𝑘0𝑠𝑖𝑛𝜃𝑖, where 𝑘0 is the propagation constant in free space,
and 𝜃𝑖 is the angle of incidence from free space onto the medium, as
shown in Fig. 1(b). This is because the momentum of the waves along
the x-direction is unchanged since there is no interface normal to the x-
direction. The incident magnetic field for TM polarization can be written
as [22,23]

𝑯𝒊 = �̂�𝒚𝐻+
𝑎 𝑒

−𝑗𝑘0(𝑥𝑠𝑖𝑛𝜃𝑖+𝑧𝑐𝑜𝑠𝜃𝑖), (3)

where, 𝐻+
𝑎 , 𝑘0 and 𝜃𝑖 are the amplitude of the incident magnetic field,

the free space wavenumber, and the angle of incidence, respectively.
The reflected and transmitted magnetic fields, 𝑯𝒓 and 𝑯𝒕, respectively,
can be represented in a similar way. The corresponding incident,
reflected and transmitted electric fields, 𝑬𝒊, 𝑬𝒓, and 𝑬𝒕 can be similarly
written as

𝑬𝒊 = (�̂�𝒙 cos 𝜃𝑖 − �̂�𝒛 sin 𝜃𝑖)𝐸+
𝑎 𝑒

−𝑗𝑘0(𝑥𝑠𝑖𝑛𝜃𝑖+𝑧𝑐𝑜𝑠𝜃𝑖). (4)
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