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A B S T R A C T

In this paper, based on a canonical quantization scheme, we study the effect of the relativistic motion of an
excited atom on its decay rate in the presence of absorbing and dispersive media. For this purpose, we introduce
an appropriate Lagrangian and describe the center-of-mass dynamical variables by the Dirac field. We obtain
the Hamiltonian of the system in a multipolar form and calculate the motion equations of the system in the
Schrödinger picture. We find that the decay rate and the quantum electrodynamics level shift of the moving atom
can be expressed in terms of the imaginary part of the classical Green tensor and the center-of-mass velocity of
the atom.

1. Introduction

One of the most fundamental phenomena in quantum optics is
the spontaneous emission caused by the inevitable interaction of an
excited atom with the vacuum-quantized electromagnetic field and/or
the reaction of the atom to its own radiation field [1]. This process
was first formulated theoretically by Dirac in 1927 and further by
Weiskopff in 1930 [1]. In order to study the spontaneous emission,
usually the atom is assumed to be in rest, which leads to difficulties
due to Heisenberg’s uncertainty relation [2]. In recent years there has
been an increasing number of papers on the role of the center-of-
mass motion in the process of spontaneous emission [3–5], Abraham–
Minkowski-controversy [6–8], Aharonov–Bohm-type phase shifts [9–
11] and many important effects and applications associated with atomic
motion in atom optics, laser cooling, trapping, and isotope separation
experiments [12].

By taking into account the so-called Röntgen term in the atom–
field interaction, Wilkens evaluated the velocity dependence of the
spontaneous decay rate of an atom which moves in free space with
a constant velocity 𝑣 to lowest order of 𝑣∕𝑐 [3]. Later, Boussiakou
et al. used a rigorous canonical formalism in which the center-of-
mass dynamics of the atom is explicitly included and calculated the
spontaneous decay of a moving excited atom in free space [4]. They
showed that, irrespective of the orientation of the atomic dipole with
respect to the direction of motion, the decay rate of the atom from the
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point of view of an observer in the laboratory frame is in agreement with
special relativity. This result has been confirmed by an alternative but
less general approach based on the basic principles of special relativity,
physical processes associated with a moving electric dipole and the
Doppler shift [5]. As a matter of fact, for more realistic cases atoms
are not in free space, but move near the material media. Therefore, this
is not a practical assumption for most real world applications.

It is well known that the presence of material media can change
the structure of the fluctuating field of the vacuum. Consequently, the
spontaneous emission rate can be modified if the atom moves with
uniform nonrelativistic speed near materials of different composition
and shape. In Refs. [13–15], authors considered a more realistic case
and studied the spontaneous emission and the friction force experienced
by an atom moving with uniform nonrelativistic velocity parallel to a
dielectric surface. However, the question that naturally arises in this
context is on the emission process occurring when an atom moves in
absorbing magnetodielectric material relativistically. It is expected that
the relativistic motion of the atom affects the radiative properties of the
atom. The present paper is intended to respond this question. Our work
extends previous works on the spontaneous decay of the moving excited
atom in free space [4,5], to the relativistic motion in the presence of the
material media.

As a first step in studying the relativistic dynamics of a moving
atom in the presence of absorbing media one has to provide the
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quantization of the electromagnetic field. Generally speaking, there are
two approaches to quantize the electromagnetic field in the presence
of material media: phenomenological and canonical approach. In this
paper, we follow the canonical methods as presented in [16–18]. More
details concerning this rigorous canonical approach can be found in
Refs. [16–23].

The paper is organized as follows. In Section 2, we present a
canonical quantization of the electromagnetic field interacting with
moving charge particles in the presence of an isotropic, inhomogeneous
and absorbing magnetodielectric medium. We start from a convenient
Lagrangian and obtain the canonical momenta and the Hamiltonian of
the combined system. We apply this approach to the case of two non-
relativistic particles of opposite charges which form an atomic system.
On the Hamiltonian, we perform a unitary transformation and derive
nonrelativistic multipolar Hamiltonian in the electric-dipole approxi-
mation. In Section 3, we generalize the formalism by introducing the
Dirac field to describe the relativistic motion of the atom. In Section 4,
we examine the time evolution of the atomic system by treating the
atom’s external and internal degrees of freedom on the same quantum
footing in the Schrödinger picture. In this section, the decay rate and the
quantum electrodynamics level shift of the two-level atom, that moving
with relativistic velocity near dissipative media, are explicitly evaluated.
Finally, the main results are summarized in Section 5.

2. Basic equations for non-relativistic dynamics

Let us consider a system composed of charged particles, the electro-
magnetic field, an absorbing and dispersive magnetodielectric medium
and the interactions between them. Since, for short particle-medium
separations the macroscopic description of the medium is not justified,
we assume that the charged particles are placed in the free space and
well separated from the medium. The Lagrangian of the whole system
is written as follows [16–19,21–23]

𝐿 = 𝐿𝑞 + 𝐿𝑒𝑚 + 𝐿𝑚 + 𝐿𝑖𝑛𝑡, (1)

where

𝐿𝑞 =
1
2
∑

𝛼
𝑚𝛼 𝐫̇2𝛼 (𝑡), (2)

is the Lagrangian for the charged particles with masses 𝑚𝛼 , charges 𝑒𝛼
and the position vector 𝐫𝛼 , and the Lagrangian of the electromagnetic
field, 𝐿𝑒𝑚, is given by 𝐿𝑒𝑚 = 1

2 ∫ 𝑑
3𝐫
(

𝜀0 
2(𝐫, 𝑡) − 2(𝐫,𝑡)

𝜇0

)

. Here, the
electric and magnetic fields can be defined in terms of the vector
potential 𝐀 and the scalar potential 𝜑 as  = −∇𝜑 − 𝜕𝐀

𝜕𝑡 and  = ∇ × 𝐀,
respectively. In the Coulomb gauge, respectively, −∇𝜑 and − 𝜕𝐀

𝜕𝑡 are
related to the longitudinal part ∥ and the transverse part ⊥ of the
total electric field .

The third term in Eq. (1), 𝐿𝑚, denotes the magnetodielectric medium
part as

𝐿𝑚 = 1
2 ∫ 𝑑3𝐫 ∫

∞

0
𝑑𝜔

[

𝐗̇2
𝜔(𝐫, 𝑡) + 𝐘̇2

𝜔(𝐫, 𝑡) − 𝜔
2(𝐗2

𝜔(𝐫, 𝑡) + 𝐘2
𝜔(𝐫, 𝑡)

)

]

. (3)

Here, the medium is modeled by two independent sets of harmonic
oscillators characterized by means of two medium fields 𝐗𝜔 and 𝐘𝜔.
This scheme is based on Hopfield’s microscopic model [24], which
provide the dissipation of the energy as well as the polarizability and
the magnetizability characters of the medium.

Finally, the interaction part of the Lagrangian (1) is given by

𝐿𝑖𝑛𝑡 =
∑

𝛼

[

𝑒𝛼 𝐫̇𝛼 ⋅ 𝐀(𝐫𝛼 , 𝑡) − 𝑒𝛼𝜑(𝐫𝛼 , 𝑡)
]

(4)

+ ∫ 𝑑3𝐫 (𝐏(𝐫, 𝑡) ⋅ (𝐫, 𝑡) +𝐌(𝐫, 𝑡) ⋅(𝐫, 𝑡)),

where the terms in the first line describe the interaction of charged
particles with the electromagnetic field, and those in the second line
represent the interaction between the electromagnetic field and the

material fields with the polarization vector 𝐏 and the magnetization
vector 𝐌, respectively. Polarization and magnetization vectors can be,
respectively, expressed in terms of the electric coupling function, 𝑔𝑒, and
the magnetic coupling function, 𝑔𝑚, as follows

𝐏(𝐫, 𝑡) = ∫

∞

0
𝑑𝜔𝑔𝑒(𝐫, 𝜔)𝐗𝜔(𝐫, 𝑡), (5)

𝐌(𝐫, 𝑡) = ∫

∞

0
𝑑𝜔𝑔𝑚(𝐫, 𝜔)𝐘𝜔(𝐫, 𝑡). (6)

We will see later that the dielectric permeability and the magnetic
permittivity of the medium can be naturally expressed in terms of
these coupling functions. To simplify the calculations, without loss of
generality, we assume that the medium is isotropic. Therefore, the
coupling functions 𝑔𝑒 and 𝑔𝑚 are both scalars, but take on tensor forms
when the medium is anisotropic [18].

From the Lagrangian density (1), the canonical conjugate momenta
associated to each dynamical variables can be obtained as

𝐩𝛼(𝑡) =
𝜕𝐿
𝜕𝐫̇𝛼

= 𝑚𝛼 𝐫̇𝛼 + 𝑒𝛼𝐀(𝐫𝛼 , 𝑡), (7)

− 𝜀0
⊥(𝐫, 𝑡) = 𝛿𝐿

𝛿𝐀̇(𝐫, 𝑡)
= 𝜀0𝐀̇(𝐫, 𝑡), (8)

𝐐𝜔(𝐫, 𝑡) =
𝛿𝐿

𝛿𝐗̇𝜔(𝐫, 𝑡)
= 𝐗̇𝜔(𝐫, 𝑡) + 𝑔𝑒(𝐫, 𝜔)𝐀(𝐫, 𝑡), (9)

𝚷𝜔(𝐫, 𝑡) =
𝛿𝐿

𝛿𝐘̇𝜔(𝐫, 𝑡)
= 𝐘̇𝜔(𝐫, 𝑡). (10)

To describe the system quantum mechanically, we follow the standard
canonical quantization procedure and impose between the variables
and their canonical conjugates, which are now operators on the Hilbert
space, the following commutation relations

[𝐫̂𝛼(𝑡) 𝐩̂𝛽 (𝑡)] = 𝑖ℏ𝛿𝛼𝛽 , (11)

[𝐀̂(𝐫, 𝑡) − 𝜀0 ̂
⊥
(𝐫′, 𝑡)] = 𝑖ℏ𝛿⊥(𝐫 − 𝐫′) , (12)

[𝐗̂𝜔(𝐫, 𝑡) 𝐐̂𝜔′ (𝐫′, 𝑡)] = 𝑖ℏ𝛿(𝐫 − 𝐫′)𝛿(𝜔 − 𝜔′), (13)

[𝐘̂𝜔(𝐫, 𝑡) 𝚷̂𝜔′ (𝐫′, 𝑡)] = 𝑖ℏ𝛿(𝐫 − 𝐫′)𝛿(𝜔 − 𝜔′), (14)

whereas all the other commutators of the canonical variables vanish.
With the help of the above canonical momenta, we can now derive the
Hamiltonian of the system. After some algebra it reads

𝐻̂ =
∑

𝛼

[𝐩̂𝛼 − 𝑒𝛼𝐀̂(𝐫̂𝛼 , 𝑡)]2

2𝑚𝛼
+ 1

2 ∫ 𝑑3𝐫[𝜀0 ̂
⊥2
(𝐫, 𝑡) + ̂2

(𝐫, 𝑡)
𝜇0

]

+ 1
2 ∫ 𝑑3𝐫 ∫

∞

0
𝑑𝜔 [𝐐̂2

𝜔(𝐫, 𝑡) + 𝜔
2𝐗̂2

𝜔(𝐫, 𝑡)]

+ 1
2 ∫ 𝑑3𝐫 ∫

∞

0
𝑑𝜔 [𝚷̂2

𝜔(𝐫, 𝑡) + 𝜔
2𝐘̂2

𝜔(𝐫, 𝑡)] (15)

− ∫ 𝑑3𝐫[𝐌̂(𝐫, 𝑡) ⋅ ̂(𝐫, 𝑡) + ̂̇𝐏(𝐫, 𝑡) ⋅ 𝐀̂(𝐫, 𝑡)]

− 1
2 ∫ 𝑑3𝐫 ∫

∞

0
𝑑𝜔 𝑔𝑒(𝐫, 𝜔)𝐀̂2(𝐫, 𝑡) +𝑤𝑐𝑜𝑢𝑙 ,

where the Coulomb energy, 𝑤𝑐𝑜𝑢𝑙, is due to the interactions between the
charged particles, the charged particles and the polarization charges,
and the interactions between the polarization charges, and is defined as
follows [18]

𝑤𝑐𝑜𝑢𝑙 = 1
2 ∫ 𝑑3𝐫 𝜌̂𝐴(𝐫)𝜑̂𝐴(𝐫) + ∫ 𝑑3𝐫 𝜌̂𝐴(𝐫)𝜑̂𝑃 (𝐫)

+ 1
2 ∫ 𝑑3𝐫 𝜌̂𝑃 (𝐫)𝜑̂𝑃 (𝐫). (16)

Here, 𝜌̂𝐴(𝐫) =
∑

𝛼𝑒𝛼𝛿(𝐫 − 𝐫̂𝛼), 𝜌̂𝑃 (𝐫) = −∇ ⋅ 𝐏̂(𝐫), are, respectively, the
charge density, the polarization charge density, and the scalar potential
which are attributed to the external and the polarization charges,
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