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A B S T R A C T

The nonlinear Schrödinger equation is the basis of the traditional stability analysis of nonstationary guided waves
in a nonlinear three-layer slab structure. The stationary (independent of the propagation distance) solutions of
the nonlinear Schrödinger equation are used as ’’initial data’’ in this analysis. In the present paper, we propose
a method to investigate the dependence of these solutions on the experimental parameters and discuss their
stability with respect to the parameters. The method is based on the phase diagram condition (PDC) and compact
representation (in terms of Weierstrass’ elliptic function and its derivative) of the dispersion relation (DR). The
problem’s parameters are constrained to certain regions in parameter space by the PDC. Dispersion curves inside
(or at boundaries) of these regions correspond to possible physical solutions of Maxwell’s equations as ’’start’’
solutions for a traditional stability analysis. Numerical evaluations of the PDC, DR, and power flow including
their parameter dependence are presented.

1. Introduction

Investigating stability of electromagnetic fields in waveguides (linear
or nonlinear represents an important issue in physics and applied
mathematics. In nonlinear waveguide theory, stability of the transverse
electric field 𝑦(𝑥, 𝑧, 𝑡) (in a planar three-layer structure (see Fig. 1))
usually is studied by assuming an ansatz (to solve Maxwell’s equations)

𝑦(𝑥, 𝑧, 𝑡) = 𝐸̃𝑦(𝑥, 𝑧, 𝛾)𝑒𝑖(𝛾𝑧−𝜔𝑡), (1)

leading to Helmholtz equations for 𝐸̃𝑦(𝑥, 𝑧, 𝛾) valid in the three layers.
If the nonlinear part of the permittivity is small compared with the
linear one the well-known [1] ‘‘Slowly Varying Envelope Approxima-
tion’’ (|𝜕𝑧𝐸̃𝑦| ≪ |𝛾𝐸̃𝑦|) can be applied. It approximates the Helmholtz
equations by nonlinear Schrödinger equations (NLSEs)

2𝑖𝛾
𝜕𝐸̃𝑦

𝜕𝑧
+

𝜕2𝐸̃𝑦

𝜕𝑥2
− (𝛾2 − 𝜖(𝐸̃2

𝑦 ))𝐸̃𝑦 = 0, (2)

which are used as the basis for a stability analysis with respect to the
propagation distance 𝑧. From the physical point of view the stability
problem is how an initial field profile (at 𝑧 = 0, say) 𝐸̃𝑦(𝑥, 0, 𝛾)
evolves with increasing 𝑧. The propagation constant 𝛾, as solution of
the dispersion relation (DR), depends on the thickness ℎ of the film
and on the (material) parameters of the problem. A stability analysis
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that yields (e.g.) a stable (𝑧-independent) profile 𝐸𝑦(𝑥, 𝛾0) with a certain
propagation constant 𝛾0, may lead, for slightly different parameters, to
a propagation constant 𝛾 not in the vicinity of 𝛾0. In general, this implies
that the profile 𝐸𝑦(𝑥, 𝛾0) and 𝐸𝑦(𝑥, 𝛾) differ considerably, indicating
instability. Thus, obviously, it is important, for physical application, to
know the parameter dependence of the propagation constant 𝛾. From
the mathematical point of view the stability problem is studied by
introducing a perturbation function 𝑓 (𝑥, 𝑧, 𝛾) and setting 𝐸̃𝑦(𝑥, 𝑧, 𝛾) =
𝐸𝑦(𝑥, 𝛾) + 𝑓 (𝑥, 𝑧, 𝛾). The NLSE (2) can be linearized leading to a system
of two coupled differential equations [2] that are rewritten as an
eigenvalue problem for 𝑓 (𝑥, 𝑧, 𝛾) (with two operators). The growth rate
of 𝑓 (𝑥, 𝑧, 𝛾) is studied by analysing the spectrum of the operators [2,3].
For discrete positive imaginary eigenvalues, 𝑓 (𝑥, 𝑧, 𝛾) decays to zero as
𝑧 → ∞ [2], so that, in this sense, 𝐸𝑦(𝑥, 𝛾) is stable. It is important to
note that in this approach, applied in numerous articles [2–17], the
propagation constant 𝛾 is obtained by assuming 𝐸̃𝑦(𝑥, 𝑧, 𝛾) constant with
respect to 𝑧, i.e., 𝐸̃𝑦(𝑥, 𝑧, 𝛾) = 𝐸𝑦(𝑥, 𝛾) [2]. Hence, the eigenvalues and
thus the growth rate of 𝑓 (𝑥, 𝑧, 𝛾) depend on 𝐸𝑦(𝑥, 𝛾). As is well known
(see, e.g., [18,19]), 𝐸𝑦(𝑥, 𝛾) can be singular or a (real) propagation
constant 𝛾, may not exist for certain parameters 𝑝𝑖 ∈ {ℎ, 𝐽0, 𝜖𝜈}. Fur-
thermore, needless to say, that the decay properties of the perturbation
eigenfunction 𝑓 depends on the parameters 𝑝𝑗 .
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Fig. 1. Geometry of the problem.

Based on the phase diagram analysis [20] conditions for solvability
and existence of solutions 𝛾(𝑝𝑖; 𝑝𝑗 ) [21] of the DR have been de-
rived [22(b)]. With respect to the traditional stability analysis, sketched
before, they are appropriate to describe nonnegative and bounded
(‘‘physical’’) intensities 𝐽 (𝑥, 𝛾) = 𝐸2

𝑦 (𝑥, 𝛾). In connection with stability,
there are three possibilities for 𝛾 = 𝛾(𝑝𝑖; 𝑝𝑗 ) to depend on a variation 𝛿𝑝𝑗 .
First, the resulting mode 𝛾̃(𝑝𝑖; 𝑝𝑗 +𝛿𝑝𝑗 ) can be inconsistent with the PDC.
Second, 𝛾̃(𝑝𝑖; 𝑝𝑗 + 𝛿𝑝𝑗 ) may satisfy the PDC with 𝛾̃ ↛ 𝛾 as 𝛿𝑝𝑗 → 0. Third,
again with PDC satisfied, 𝛾̃ → 𝛾 as 𝛿𝑝𝑗 → 0.

The paper is organized as follows. Section 2 presents the problem.
Section 3 is devoted to the solutions of the basic nonlinear differential
equations, and to the dispersion relations with its solvability conditions.
The results of Section 3 are applied for certain parameters 𝜖𝜈 , 𝑎𝜈 , ℎ in
Section 4. The paper concludes with a summary and some remarks in
Section 5.

2. Statement of the problem

We consider a planar waveguide structure with lossless, isotropic,
nonmagnetic homogeneous material and a permittivity 𝜖 according to

𝜖 =

⎧

⎪

⎨

⎪

⎩

𝜖𝑠 = 𝜖𝑠 + 𝑎𝑠|𝑦|2, 𝑥 < 0,
𝜖𝑓 = 𝜖𝑓 + 𝑎𝑓 |𝑦|2, 0 ≤ 𝑥 ≤ ℎ,

𝜖𝑐 = 𝜖𝑐 + 𝑎𝑐 |𝑦|2, 𝑥 > ℎ,
(3)

with 𝜖𝜈 , 𝑎𝜈 , 𝜈 = 𝑠, 𝑓 , 𝑐, (see Fig. 1) real and constant.
Assuming 𝐸̃𝑦(𝑥, 𝑧, 𝛾) and propagation constant 𝛾 to be real and

inserting ansatz (1) with 𝐸̃𝑦(𝑥, 𝑧, 𝛾) = 𝐸𝑦(𝑥, 𝛾) into Maxwell’s equations
we obtain

𝑑2𝐸𝑦(𝑥, 𝛾)

𝑑𝑥2
=

⎧

⎪

⎨

⎪

⎩

(𝛾2 − 𝜔2𝜖𝑠𝜇0)𝐸𝑦(𝑥, 𝛾), 𝑥 < 0,
(𝛾2 − 𝜔2𝜖𝑓𝜇0)𝐸𝑦(𝑥, 𝛾), 0 ≤ 𝑥 ≤ ℎ,

(𝛾2 − 𝜔2𝜖𝑐𝜇0)𝐸𝑦(𝑥, 𝛾), 𝑥 > ℎ.
(4)

With 𝑘20 = 𝜔2𝜇0𝜖0 and scaling 𝛾 and 𝑥 by 𝑘0, 𝜖 by 𝜖0, Helmholtz Eq. (4)
can be written as

𝑑2𝐸(𝑥, 𝛾)
𝑑𝑥2

=

⎧

⎪

⎨

⎪

⎩

(𝛾2 − 𝜖𝑠)𝐸(𝑥, 𝛾), 𝑥 < 0,
(𝛾2 − 𝜖𝑓 )𝐸(𝑥, 𝛾), 0 ≤ 𝑥 ≤ ℎ,

(𝛾2 − 𝜖𝑐 )𝐸(𝑥, 𝛾), 𝑥 > ℎ,
(5)

where 𝐸(𝑥, 𝛾) denotes 𝐸𝑦(𝑥, 𝛾) with scaled arguments. Inserting 𝜖𝜈
according to Eqs. (3) into Eqs. (5), multiplying by 𝐸′, and integrating
(with respect to 𝐸) we get

(

𝑑𝐽 (𝑥, 𝛾)
𝑑𝑥

)2
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−2𝑎𝑠𝐽 3(𝑥, 𝛾) + 4(𝛾2 − 𝜖𝑠)𝐽 2(𝑥, 𝛾) + 4𝐶𝑠𝐽 (𝑥, 𝛾)
∶= 𝑅𝑠(𝐽 ), 𝑥 < 0,

−2𝑎𝑓𝐽 3(𝑥, 𝛾) + 4(𝛾2 − 𝜖𝑓 )𝐽 2(𝑥, 𝛾) + 4𝐶𝑓𝐽 (𝑥, 𝛾)
∶= 𝑅𝑓 (𝐽 ), 0 ≤ 𝑥 ≤ ℎ,

−2𝑎𝑐𝐽 3(𝑥, 𝛾) + 4(𝛾2 − 𝜖𝑐 )𝐽 2(𝑥, 𝛾) + 4𝐶𝑐𝐽 (𝑥, 𝛾)
∶= 𝑅𝑐 (𝐽 ), 𝑥 > ℎ,

(6)

where 𝐽 (𝑥, 𝛾) = 𝐸2(𝑥, 𝛾), and 𝐶𝜈 are the integration constants. The
problem is, first, to find propagation constant 𝛾 associated to physical
solutions 𝐽𝜈 (𝑥, 𝛾) of Eqs. (6) that satisfy radiation conditions at infinity

𝐸(𝑥, 𝛾) → 0,
𝑑𝐸(𝑥, 𝛾)

𝑑𝑥
→ 0, |𝑥| → ∞, (7)

second, to analyse the parameter dependence of 𝛾, and thus the stability
of solutions 𝐽𝜈 (𝑥, 𝛾).

3. Solution

Apart from 𝐽 (𝑥, 𝛾) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 the solutions of Eqs. (6) are [23,22]:

𝐽𝑠±(𝑥, 𝛾) =
𝐽0

(

cosh(𝑥
√

𝛾2 − 𝜖𝑠) ∓
√

1 − 𝑎𝑠𝐽0
2(𝛾2−𝜖𝑠)

sinh(𝑥
√

𝛾2 − 𝜖𝑠)
)2

,

𝑥 < 0, (8)

𝐽𝑓±(𝑥, 𝛾)

= 𝐽0 +
1
2𝑅

′
𝑓 (𝐽0)

(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)

±℘′√𝑅𝑓 (𝐽0) +
1
24𝑅𝑓 (𝐽0)𝑅′′′

𝑓 (𝐽0)

2
(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)2
− 1

48𝑅𝑓 (𝐽0)𝑅′′′′
𝑓 (𝐽0)

,

0 ≤ 𝑥 ≤ ℎ,

or, equivalently,

𝐽𝑓±(𝑥, 𝛾) = 𝐽0 −
9𝑎𝑓𝐽 2

0 − 12(𝛾2 − 𝜖𝑓 )𝐽0 − 6𝐶𝑓

6℘(𝑥; 𝑔2, 𝑔3) + 3𝑎𝑓𝐽0 − 2(𝛾2 − 𝜖𝑓 )

−
18(𝑎𝑓𝐽 3

0 − 2(𝛾2 − 𝜖𝑓 )𝐽 2
0 − 2𝐶𝑓𝐽0)

(6℘(𝑥; 𝑔2, 𝑔3) + 3𝑎𝑓𝐽0 − 2(𝛾2 − 𝜖𝑓 ))2

±
18℘′(𝑥; 𝑔2, 𝑔3)

√

−2𝑎𝑓𝐽 3
0 + 4(𝛾2 − 𝜖𝑓 )𝐽 2

0 + 4𝐶𝑓𝐽0

(6℘(𝑥; 𝑔2, 𝑔3) + 3𝑎𝑓𝐽0 − 2(𝛾2 − 𝜖𝑓 ))2
, (9)

with 𝑔2 and 𝑔3 according to Eqs. (12), and with derivative

𝜕𝑥𝐽𝑓±(𝑥, 𝛾) =
1
2𝑅

′
𝑓 (𝐽0)℘

′ ± (6℘2 − 𝑔2
2 )

√

𝑅𝑓 (𝐽0)

2
(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)2
− 1

48𝑅𝑓 (𝐽0)𝑅′′′′
𝑓 (𝐽0)

−
2𝑅′

𝑓 (𝐽0)℘
′
(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)2
± 4

(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)

(℘′)2
√

𝑅𝑓 (𝐽0)
(

2
(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)2
− 1

48𝑅𝑓 (𝐽0)𝑅′′′′
𝑓 (𝐽0)

)2

−
1
6℘

′
(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)

𝑅𝑓 (𝐽0)𝑅′′′
𝑓 (𝐽0)

(

2
(

℘ − 1
24𝑅

′′
𝑓 (𝐽0)

)2
− 1

48𝑅𝑓 (𝐽0)𝑅′′′′
𝑓 (𝐽0)

)2
, 0 ≤ 𝑥 ≤ ℎ, (10)

𝐽𝑐±(𝑥, 𝛾)

= 𝐽 (ℎ)
(

cosh((𝑥 − ℎ)
√

𝛾2 − 𝜖𝑐 ) ∓
√

1 − 𝑎𝑐𝐽 (ℎ)

2(𝛾2−𝜖𝑐 )
sinh((𝑥 − ℎ)

√

𝛾2 − 𝜖𝑐 )

)2
,

𝑥 > ℎ, (11)

where ℘(𝑥; 𝑔2, 𝑔3) denotes Weierstrass’ elliptic function, and 𝐽0, 𝐽 (ℎ)

have been chosen so that intensities are continuous at 𝑥 = 0 and 𝑥 = ℎ,
respectively. The invariants 𝑔2, 𝑔3 of ℘(𝑥; 𝑔2, 𝑔3) are given by

⎧

⎪

⎨

⎪

⎩

𝑔2 = 2𝑎𝑓𝐶𝑓 + 4
3
(𝛾2 − 𝜖𝑓 )2,

𝑔3 =
2
3
𝑎𝑓𝐶𝑓 (𝜖𝑓 − 𝛾2) − 8

27
(𝛾2 − 𝜖𝑓 )3.

(12)

In Eqs. (9) and (10) the prime denotes differentiation with respect to 𝐽
for𝑅𝑓 (𝐽 ) and differentiation with respect to 𝑥 for℘(𝑥; 𝑔2, 𝑔3). In deriving
Eqs. (8) and (11), 𝐶𝑠 = 𝐶𝑐 = 0 has been used (according to condition
(7) applied to 𝑅𝜈 (𝐽 ), 𝜈 = 𝑠, 𝑐, written in terms of 𝐸) and, as established
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