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A B S T R A C T

We report the existence and stability of 1-charge discrete vortex solitons in linear scaled-space square lattices with
photorefractive self-focusing nonlinearity. By scaling the square lattice along the edge and diagonal, we obtained
rectangular and diamond lattices. In both settings, it is shown that the vortices can be stable in a moderate power
region, and the vortices with high power are unstable, suffering from oscillatory instabilities. The structure of the
rectangular potential strongly affects the profile of the vortex solitons, leading to distinct intensity asymmetry,
phase dislocation, and exponential instability in the low power region. Correspondingly, the vortex profile could
be well maintained in diamond lattices. Fascinating, even the low power unstable vortices suffered from both
oscillatory and exponential instability in diamond lattices, they have a much weaker instability than counterparts
in rectangular lattices.

1. Introduction

Vortex solitons are special nonlinear localised states that appear in
various branches of physics, such as optics, and Bose–Einstein conden-
sates [1]. An optical vortex is one type of optical singularity which
possesses a helical wave-front structure and a phase singularity in the
centre [2]. Due to the azimuthal modulational instability, vortexes with
orbital angular momentum are unstable in a self-focusing homogeneous
nonlinear medium and will break into several fundamental solitons that
fly off tangential to the vortex ring [3]. Stable optical vortex solitons
have been predicted in media with competing nonlinearities [4,5],
nonlocal nonlinearities [6], alternating self-focusing and self-defocusing
layers in Kerr media [7], periodic and ring-like potentials [8], parity-
time-symmetric potentials [9], etc. Photonic lattices (e.g., a periodic
structure of refractive index modulation) result in unique photonic
band-gap structures similar to Bloch bands in solid-state physics that
have served as an important tool for wave control [10]. Vortex solitons
have been found in self-focusing media with photonic lattices called
discrete vortex solitons [11], in which the main energy of soliton focus
on the lattice sites like several fundamental solitons with a vortex phase
structure and the propagation constant located in the semi-infinite Bloch
gap. Stable 1-charge discrete vortex solitons have been predicted to exist
theoretically in Kerr media with square photonic lattices, using either
discrete models or continuous models. Discrete vortex solitons were first
predicted to exist in discrete models [11,12], where the NLSE(nonlinear
Schrödinger equation) has a discrete form called DNLSE, and it was
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found that the soliton solution is stable when the inter-site coupling
is smaller than a critical value [11,13].

In continuous models, the discrete vortex solitons can be classified
by different propagation constants, and a stable soliton was found in a
region of propagation constants depending on the lattice profile. The
discrete vortex solitons and gap vortex solitons in photonic lattices
have been studied systematically for both Kerr and saturable nonlinear-
ities [14]. Two independent research groups simultaneously observed
discrete vortex solitons in photorefractive self-focusing media with
optically induced square lattices [15,16]. It is interesting to investigate
the discrete vortex solitons in non-square photonic lattices such as
hexagonal lattices and the interface of different lattices. In hexagonal
lattices, 1-charge vortex solitons with six main sites have been found
to be always unstable, but double-charge vortex solitons can be stable
within a certain range [17,18]. Vortex solitons located in the interface
of photonic lattices have been found with asymmetric energy and the
phase distribution depends on the profiles of the lattice [19].

In this paper, we exploit the existence and stability of discrete vortex
solitons in linear scaled-space square lattices within the framework of
a continuous nonlinear model of optically induced lattices generated
in photorefractive nonlinear media. We scaled the lattice along two
directions, the edge direction and the diagonal direction. We reveal
that the stable range of the soliton shrinks quickly with the increase of
asymmetry introduced by scaling in the edge direction, and two critical
points appear in the stretched and compressed case. In contrast to edge
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scaling, the soliton range will be narrow only when the lattice is scaled
down in the diagonal direction. We also investigated how the soliton
solution responds to lattice scaling and the instability modes in different
unstable ranges.

2. Modelling of vortex solitons

According to a paraxial approximation, the propagation of a probe
beam in a biased photorefractive crystal with optically induced photonic
lattices is governed by the normalised (1+2) dimensional nonlinear
equation with saturable nonlinearity:

𝑖 𝜕𝑈
𝜕𝑍

+ 𝜕2𝑈
𝜕𝑋2

+ 𝜕2𝑈
𝜕𝑌 2

− 𝐸
1 + 𝑉 + |𝑈 |

2
𝑈 = 0 (1)

where 𝑈 (𝑋, 𝑌 ,𝑍) is normalised by the slowly varying complex envelope
of the probe beam. The transverse coordinates 𝑋, 𝑌 and longitudinal
coordinate 𝑍 are dimensionless parameters, normalised by the period
of the lattice and the diffraction length of the probe beam, respectively.
The parameters 𝐸 proportional to the bias voltage can be positive
or negative. Here, we chose 𝐸 > 0 corresponding to self-focusing
nonlinearity. 𝑉 (𝑋, 𝑌 ) is a periodic lattice potential in the transverse
coordinate. In experiment, the photonic lattices can optically induced
by printing an ordinarily polarised non-diffractive pattern onto a biased
photorefractive strontium barium niobate crystal (SBN), where the
probe beam should be extraordinarily polarised. A similar equation was
used to describe the saturation of the electronic Kerr effect for increasing
intensities [20].

We study the existence and stability of discrete vortex solitons in
linear scaled-space square lattices. For example, square lattices that are
linear scaled along the edge can be expressed as:

𝑉 (𝑋, 𝑌 , 𝛼) = 𝐼sin2𝑋
𝛼
sin2𝑌 . (2)

Here 𝐼 is the peak intensity and 𝛼 is the space scaling parameter along
the edge.

For vortex solutions, we write the complex envelope in the stationary
form as 𝑈 (𝑋, 𝑌 ,𝑍) = 𝑢 (𝑋, 𝑌 ) 𝑒𝑖𝜇𝑍 , where 𝜇 is the propagation constant,
and 𝑢 (𝑋, 𝑌 ) is a complex-value function. We obtain a new nonlinear
equation for 𝑢 (𝑋, 𝑌 ) by substituting the stationary form into Eq. (1):
(

𝜕2

𝜕𝑋2
+ 𝜕2

𝜕𝑌 2
+ 𝜇 − 𝐸

1 + 𝑉 + |𝑢|2

)

𝑢 = 0. (3)

The solutions can be found by several numerical relaxation schemes
with a guessed solution. We used the modified squared-operator method
(MSOM) [21]. The initial guess is a vortex beam with a 2𝜋 phase
accumulation around the phase singularity local to the centre of the
square lattice unit, and the propagation constant 𝜇 local to the semi-
infinite Bloch gap. By changing the scaling factor 𝛼 and the scaling
directions, we determine two classes of square-like discrete vortex
solitons.

3. Rectangular vortex solitons

First, we present the properties of 1-charge off-site vortices in self-
focusing photorefractive media with rectangular 2D periodic lattices.
The modulation form 𝑉 = 𝐼sin2 (𝑋∕𝛼) sin2𝑌 could be seen as scaled
square lattices in the coordinate 𝑋 (along the square edge), where 𝛼 is
the scaling parameter. We consider both the stretched and compressed
square lattices corresponding to 𝛼 > 1 and 𝛼 < 1, respectively.
We remind of the sites of the rectangular lattices that we obtained
are an ellipse. To obtain a large stable region, we set 𝐼 = 2 and
𝐸 = 7.5 according to reference [22]. We illustrate the rectangular
lattice potential with 𝛼 = 1.3 in Fig. 1(a). In square lattices, the off-
site vortices have four exactly symmetrical major lobes located on the
lattice sites and the phase singularity is at the centre of the four lobes
(see Fig. 1(b1) and (b2), whereas the scaling of the lattice breaks the
symmetry of the vortices in the diagonal direction. The vortex profiles

in the rectangular lattices are not just scaled from those in the square
lattices. Two examples corresponding to 𝜇 = −4.5, 𝛼 = 1.075 and
1.15 are shown in Fig. 1(c1) and (d1). To show the asymmetry of
the distinctly, we illustrate the corresponding slices (along the dashed
line in Fig. 1(c1) and (d1)) of the vortex profiles along the rectangle
length and width in Fig. 1(c2) and (d2). One can see that the profiles
of the vortex intensities are no longer symmetrical for the diagonal,
even though the four lobes have the same peak intensity. The lattice
scaling turn the field distribution between the two neighbouring lobes
and the trail lattice sites. There is more energy appearing between two
neighbouring lobes in the lengthwise slice than that in the widthwise
slice. The trails of the vortex behave different in the two slices. The
trails of the vortices become lower in the lengthwise slice. Notably, the
trails in the widthwise slice are larger even compared to those in the
original square lattices.

The phase structure is the inherent feature in vortex solitons. In
normal square lattices, the phase difference is 𝜋∕2 between every two
neighbouring lobes (see Fig. 1(b2)). In a rectangular lattice, the phase
difference between the lobes in the lengthwise direction is smaller than
𝜋∕2 (Fig. 1(c3)). At a scaling factor of 𝛼 = 1.15, the phase structure of the
vortex with 𝜇 = −4.5 is more likely due to the dipole soliton (Fig. 1(d3)).
The four lobes can be divided into two parts by the phase difference.

The asymmetry clearly appears when the propagation constant of the
vortices is near the first Bloch band. On this occasion, the vortices have
lower intensity and possess more trails in the adjacent sites. The profiles
of the vortex soliton intensity distributions with 𝛼 = 1.1, 𝜇 = −4.5 and
−3.5 are illustrated in Fig. 2(a1) and (b1). With a large propagation
constant, the trails are compressed like that in square lattices and the
profiles in both slices views tend to be equal (Fig. 2(b2)). With the
scaling factor settled (𝛼 = 1.1), the phase structure of the vortex with
𝜇 = −3.5 is similar to the vortex in square lattices than the vortex with
𝜇 = −4.5 (see Fig. 2 (a3) and (b3)).

To determine the stability of the soliton, we search the linear-
stability spectrum of the solitary solutions in Eq. (1). If 𝑈 (𝑋, 𝑌 ,𝑍) =
𝑢 (𝑋, 𝑌 ) 𝑒𝑖𝜇𝑍 is a solitary solution for Eq. (1), a perturbed solution can
be expressed:

𝑈𝑝 (𝑋, 𝑌 ,𝑍) =
{

𝑢 (𝑋, 𝑌 ) + [𝑣 (𝑋, 𝑌 ) −𝑤 (𝑋, 𝑌 )] 𝑒𝜆𝑍

+ [𝑣 (𝑋, 𝑌 ) +𝑤 (𝑋, 𝑌 )]∗𝑒𝜆
∗𝑍

}

𝑒𝑖𝜇𝑍 (4)

where 𝑣 (𝑋, 𝑌 ) and 𝑤 (𝑋, 𝑌 ) are normal-mode perturbations and 𝜆 is
the complex-valued instability growth rate. Substituting the perturbed
solution into Eq. (1) and linearising, we obtain the following eigenvalue
problem:
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According to Fourier collocation method [23], we obtain the stability
spectrum of a solitary solution. A solution is stable only when Real(𝜆)
= 0 for all of the eigenvalues 𝜆 in Eq. (5). We show the power versus
propagation constant of the vortex solitons in Fig. 3(a). The power of
the vortex solitons is defined as 𝑃 = ∫ ∞

−∞ ∫ ∞
−∞ |𝑢|2𝑑𝑥𝑑𝑦. The power is a

monotone increasing function of the propagation constant. The profile of
𝑃 –𝜇 curve is unchanged with the scaling parameter 𝛼 which is just have
a small shift. With 𝜇 fixed, the vortices have lower power with a larger
scaling factor in rectangular lattices, although the lattice sites have a
larger area. We show the maximum growth-rate diagram for 𝛼 = 1 and
𝛼 = 1.1 in Fig. 3(b). The vortices in square lattices are linearly stable
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