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A B S T R A C T

The quantum Toffoli gate can be utilized as a fundamental building block for translating more complicated
classical operations into quantum algorithms, so its efficient construction is more conducive to the realization of
quantum computation in large-scale than two-qubit universal quantum logic gates. Assisted by the spatial degree
of freedom based on weak cross-Kerr nonlinearities, a construction scheme of the nearly deterministic Toffoli gate
is presented. After the measurement on the coherent state, the required swap transformations and single-photon
transformations are performed by the classical feed-forward to complete the construction task if nonzero phase
shifts are displayed. The scheme proposed here is more efficient than those based on the standard model of
linear optics and more feasible than those fulfilled by a variety of two-qubit universal quantum logic gates and
one-qubit gates. Moreover, with mature measurement methods and simple optical elements and operations, this
scheme enhances the feasibility of experiments to construct the Toffoli gate.

1. Introduction

The past several decades have witnessed the great progresses of the
study of quantum logic gates in a variety of physical systems, either
theoretical aspect [1–9] or experimental aspect [10–15].

As we know, a series of universal logic gates can realize any compli-
cated computation [16], for instance, two-qubit universal quantum logic
gates such as controlled-not gates and arbitrary single-qubit rotations.
As for three-qubit universal quantum logic gates, a Fredkin gate and
a Toffoli gate [17] can also realize any computation combined with a
few one-qubit gates. Based on the three-qubit universal quantum logic
gates, the multi-qubit quantum logic gates to complete complicated
computation can be constructed more simply than the combination of a
number of two-qubit universal quantum logic gates.

It has been showed that the Fredkin gate can be constructed by
the Toffoli gate combined with two controlled-not gates, and the fault-
tolerant Toffoli gate can be constructed by four 𝑇 gates and Clifford-
group operations [18] or five conditional two-qubit gates [19,20].
Furthermore, the construction scheme of the Toffoli gate with three
global two-qubit gates was proposed [21].

Employing the standard model of linear optics [22], the quantum
logic gates can be constructed with probability less than unity [23].

* Corresponding authors at: College of Mathematics and Physics, Bohai University, Jinzhou 121013, China.
E-mail addresses: xiuxiaomingdl@126.com (X.-M. Xiu), donglixm@163.com (L. Dong).

However, assisted by cross-Kerr nonlinear interaction, the limitation
on the success probability less than unity can be broken up [24].
So numerous schemes of two-photon universal logic gates [25–29],
three-photon universal logic gates and multi-photon logic gates were
constructed based on cross-Kerr nonlinearities [25,26,30–34].

As mentioned above, the conventional construction schemes of the
three-qubit universal quantum logic gates are complicated if they are
completed by two-qubit universal quantum logic gates. In addition, the
construction schemes based on the standard model of linear optics are
probabilistic and the corresponding success probabilities are smaller
and smaller with the increasing number of photon qubits. So cross-Kerr
nonlinearities attracts a lot of attention, which can fulfill the tasks of
quantum information processing with the probability near unity and
need not combination of so many two-qubit universal quantum logic
gates.

A Toffoli gate invented by Tommaso Toffoli is also called as the
controlled–controlled-not gate, which tells its function, that is |𝑥, 𝑦, 𝑧⟩ →
|𝑥, 𝑦, 𝑧 ⊕ 𝑥𝑦⟩, where 𝑥, 𝑦, and 𝑧 are binary number 0 or 1 and ⊕
denotes binary addition. That is, a Toffoli gate has three-qubit inputs
and outputs, and if only both of the former two qubits are 1, the third
qubit is inverted. The quantum Toffoli gate is commonly utilized as
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a fundamental building block for translating more complex classical
operations into quantum algorithms, such as Shor’s factoring algorithm
and quantum simulation, by which the quantum computation in large-
scale can be expected [35]. It can be said that the Toffoli gate is critically
important in the field of quantum computing, and how to simply and
feasibly construct the Toffoli gate is interesting and meaningful for the
large-scale quantum computation [18].

In this paper, we consider the construction of a nearly deterministic
Toffoli gate based on weak cross-Kerr nonlinearities, which does not
need the complicated steps as the schemes fulfilled by the two-photon
universal gates and single-photon gates. Moreover, it can be realized
with the probability near close to unity. The mature measurement
method and available operations enable the realization of this scheme
to be feasible and expectable.

2. A nearly deterministic Toffoli gate assisted by weak cross-Kerr
nonlinearities

In the optical systems, the polarization of photons is commonly
utilized as the qubits and the horizontal mode |𝐻⟩ represents 0 and
the vertical mode |𝑉 ⟩ represents 1.

Selected two polarization photons, |𝜓⟩𝐶1 = (𝑎1|𝐻⟩ + 𝑏1|𝑉 ⟩)𝐶1 ,
|𝜓⟩𝐶2 = (𝑎2|𝐻⟩ + 𝑏2|𝑉 ⟩)𝐶2 , as the control photons, and one polarization
photon, which is in the state |𝜙⟩𝑇 , as the target photon, and the Toffoli
gate makes the following change,

|𝜓⟩𝐶1 |𝜓⟩𝐶2 |𝜙⟩𝑇
Toffoli gate
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→(𝑎1𝑎2|𝐻𝐻⟩ + 𝑎1𝑏2|𝐻𝑉 ⟩ + 𝑏1𝑎2|𝑉 𝐻⟩)𝐶1𝐶2 |𝜙⟩𝑇

+ 𝑏1𝑏2|𝑉 𝑉 ⟩𝐶1𝐶2 |𝜙⟩𝑇 , (1)

where |𝜙⟩𝑇 is the inversion (bit-flip) on the initial state of the target
photon (|𝜙⟩𝑇 ).

In what follows, we propose a construction of the Toffoli gate with
the assistance of weak cross-Kerr nonlinearities, which can be illustrated
in Fig. 1.

Step S1: Entangling the first control photon and the target photon.
Passing through (PBS1, BS1) and the Kerr medium, photons (𝐶1, 𝑇 ) and
coherent state |𝛼1⟩ evolve as

|𝜓⟩𝐶1 |𝜙⟩𝑇 |𝛼1⟩
PBS1 ,BS1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

1
√

2
(𝑎1|𝐻⟩𝐶12 + 𝑏1|𝑉 ⟩𝐶11 )(|𝜙⟩𝑇1 + |𝜙⟩𝑇2 )|𝛼1⟩

Kerr medium
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

1
√

2
(𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇1 |𝛼1⟩ + 𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇2 |𝛼1𝑒

−𝑖𝜃
⟩

+ 𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇1 |𝛼1𝑒
𝑖𝜃
⟩

+ 𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇2 |𝛼1⟩), (2)

where subscripts (𝐶11, 𝐶12) and (𝑇1, 𝑇2) stand for potential paths of
photon 𝐶1 and photon 𝑇 .

To disentangle the coherent state from photons (𝐶1, 𝑇 ), an 𝑋
Homodyne measurement is performed to distinguish zero phase shift
and nonzero phase shifts ±𝜃 of the coherent state [36]. As for the 𝑋
Homodyne measurement, one measurement outcome is zero phase shift
and the other measurement outcomes are nonzero phase shifts 𝜃 or −𝜃,
that is

⟨𝑥|𝛼⟩(𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇1 + 𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇2 ) + ⟨𝑥|𝛼𝑒−𝑖𝜃⟩(𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇2 )

+ ⟨𝑥|𝛼𝑒𝑖𝜃⟩(𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇1 )

= 𝑓 (𝑥, 𝛼)(𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇1 + 𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇2 ) + 𝑓 (𝑥, 𝛼 cos 𝜃)

× (𝑒−𝑖𝜉(𝑥,𝜃)𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇2 + 𝑒
𝑖𝜉(𝑥,𝜃)𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇1 ), (3)

where,

𝑓 (𝑥, 𝛼 cos 𝜃) = (2𝜋)−1∕4 exp[−(𝑥 − 2𝛼 cos 𝜃)2∕4],

𝑓 (𝑥, 𝛼) = (2𝜋)−1∕4 exp[−(𝑥 − 2𝛼)2∕4],

𝜉(𝑥, 𝜃) = 𝛼 sin 𝜃(𝑥 − 2𝛼 cos 𝜃). (4)

If the zero phase shift happens, the state of photons (𝐶1, 𝑇 ) is

𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇1 + 𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇2 . (5)

Otherwise, if measurement outcomes imply nonzero phase shifts ±𝜃, the
state of photons (𝐶1, 𝑇 ) is

𝑒−𝑖𝜉(𝑥,𝜃)𝑎1|𝐻⟩𝐶12 |𝜙⟩𝑇2 + 𝑒
𝑖𝜉(𝑥,𝜃)𝑏1|𝑉 ⟩𝐶11 |𝜙⟩𝑇1 . (6)

When zero phase occurs (shown in Eq. (5)), no operation is required.
Otherwise, when nonzero phase shifts are witnessed (shown in Eq. (6)),
the phase modulation [PS 2𝜉(𝑥, 𝜃)] should be performed on photon 𝐶1
passing through path 𝐶12. In addition, a swap transformation (Swap
Module in Fig. 1) is needed to be performed on photon 𝑇 . In a word, the
phase modulation and the swap transformation change the state shown
in Eq. (6) to the state shown in Eq. (5).

Step S2: Dividing paths of the target photon. Passing through (BS2,
BS3), photon 𝑇 enters into four potential paths, and the system state can
be denoted as

𝑎1|𝐻⟩𝐶1 (|𝜙⟩𝑇11 + |𝜙⟩𝑇12 ) + 𝑏1|𝑉 ⟩𝐶1 (|𝜙⟩𝑇21 + |𝜙⟩𝑇22 ), (7)

where the subscripts (𝑇11, 𝑇12, 𝑇21, 𝑇22) stand for four potential paths
of photon 𝑇 . As for photon 𝐶1, after it passes through PBS2, path 𝐶11
and path 𝐶12 merge into path 𝐶1, so the subscripts both 𝐶11 and 𝐶12 are
changed to 𝐶1 in Eq. (7) and later.

Step S3: Entangling the second control photon and the target photon.
The procedure that photon 𝐶2 entangles with photon 𝑇 is similar to
Step S1. There are three paths passing through the Kerr medium, so
this step is more complicated than Step S1. If photon 𝐶2 and photon
𝑇 pass through path 𝐶21 and paths (𝑇11, 𝑇21), coherent state |𝛼2⟩ will
accumulate up phase shift 𝜃 and phase shifts (𝜃, 𝜃) respectively, as
illustrated in Fig. 1.

To disentangle the coherent state from photons (𝐶1, 𝐶2, 𝑇 ), another
𝑋 Homodyne measurement is performed. Two potential swap transfor-
mations and phase modulation are executed on photon 𝑇 conditioned
on the measurement outcomes. Passing through PBS4, photon 𝐶2 enters
into path 𝐶2 from path 𝐶21 and path 𝐶22.

As a result, the system of photons (𝐶1, 𝐶2, and 𝑇 ) evolves into

𝑎1𝑎2|𝐻𝐻⟩𝐶1𝐶2 |𝜙⟩𝑇11 + 𝑎1𝑏2|𝐻𝑉 ⟩𝐶1𝐶2 |𝜙⟩𝑇12 + 𝑏1𝑎2|𝑉 𝐻⟩𝐶1𝐶2 |𝜙⟩𝑇21
+ 𝑏1𝑏2|𝑉 𝑉 ⟩𝐶1𝐶2 |𝜙⟩𝑇22 . (8)

Step S4: Not gate transformation. A not gate transformation fulfilled
by HWP 45◦ on path 𝑇22 is performed, so the following state can be
obtained,

𝑎1𝑎2|𝐻𝐻⟩𝐶1𝐶2 |𝜙⟩𝑇11 + 𝑎1𝑏2|𝐻𝑉 ⟩𝐶1𝐶2 |𝜙⟩𝑇12 + 𝑏1𝑎2|𝑉 𝐻⟩𝐶1𝐶2 |𝜙⟩𝑇21
+ 𝑏1𝑏2|𝑉 𝑉 ⟩𝐶1𝐶2 |𝜙⟩𝑇22 . (9)

Step S5: Four beam splitter superposition. Passing through BS4, BS5,
BS6 and BS7, photon 𝑇 undergoes the superposition effect and exits from
one of four potential output ports 𝑇 ′

11, 𝑇
′
12, 𝑇

′
21 and 𝑇 ′

22, and consequently
the state of three photons (𝐶1, 𝐶2 and 𝑇 ) is

(𝑎1𝑎2|𝐻𝐻⟩ + 𝑎1𝑏2|𝐻𝑉 ⟩ + 𝑏1𝑎2|𝑉 𝐻⟩)𝐶1𝐶2 |𝜙⟩𝑇 ′11
+ 𝑏1𝑏2|𝑉 𝑉 ⟩𝐶1𝐶2 |�̄�⟩𝑇 ′11

+ (𝑎1𝑎2|𝐻𝐻⟩ + 𝑎1𝑏2|𝐻𝑉 ⟩ − 𝑏1𝑎2|𝑉 𝐻⟩)𝐶1𝐶2 |𝜙⟩𝑇 ′12

− 𝑏1𝑏2|𝑉 𝑉 ⟩𝐶1𝐶2 |�̄�⟩𝑇 ′12

+ (𝑎1𝑎2|𝐻𝐻⟩ − 𝑎1𝑏2|𝐻𝑉 ⟩ + 𝑏1𝑎2|𝑉 𝐻⟩)𝐶1𝐶2 |𝜙⟩𝑇 ′21

− 𝑏1𝑏2|𝑉 𝑉 ⟩𝐶1𝐶2 |�̄�⟩𝑇 ′21

+ (𝑎1𝑎2|𝐻𝐻⟩ − 𝑎1𝑏2|𝐻𝑉 ⟩ − 𝑏1𝑎2|𝑉 𝐻⟩)𝐶1𝐶2 |𝜙⟩𝑇 ′22

+ 𝑏1𝑏2|𝑉 𝑉 ⟩𝐶1𝐶2 |�̄�⟩𝑇 ′22
. (10)

Step S6: Detecting output ports of the target photon. To obtain the
function of a Toffoli gate, four nondemolition detectors are placed into
four terminals of photon 𝑇 . From Eq. (10), it can be seen that if photon 𝑇
is detected at the output port 𝑇 ′

11, no extra operation will be needed, and
the target state shown in Eq. (1) is obtained. But if any one of other three
detectors responds, phase-flip transformation (𝑍) should be performed
on photons (𝐶1 or/and 𝐶2) to fulfill the Toffoli gate. Explicitly, the
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