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A B S T R A C T

Multi-dimensional quantum walks provide a powerful tool for simulating quantum phenomena. We design a
feasible scheme to implement two-dimensional quantum walks in a ‘‘real’’ position space, demonstrating a
scalable quantum walk on a non-trivial graph structure with single photons and bulk optical interferometry. By
combining the spatial modes and polarizations of photons, we expand the dimensions of the coin states from
two to four and implement arbitrary four-side coin flipping. Furthermore, with the growth of the number of
walk steps, the number of linear optical elements increases linearly. This significantly reduces the resources
necessary for its feasible experimental realization. Our scheme is then remarkably scalable and feasible with
current technologies. Our results illustrate the potential of a two-dimensional quantum walk as a route for
simulating and understanding complex quantum systems.

1. Introduction

A Quantum walk (QW) [1–4] serves as an ideal test-bed for studying
the dynamics of quantum systems. In the field of quantum simulation,
QWs are emerging as a versatile tool. Especially, multi-dimensional
QWs can exhibit highly non-trivial topological structure, providing a
powerful tool for simulating topological phenomena [5–11]. Besides,
QWs have attracted attention also due to their applications such as
developing new quantum algorithms [12–15] and transferring quantum
states [16,17]. A one-dimensional (1D) QW is the most studied example
and has been demonstrated in a number of physical systems, such as
nuclear magnetic resonance [18], trapped atoms and ions [19–23],
linear optics [24–29] and integrated optics [30–32]. While theoretical
investigations already take advantage of complex graph structures in
higher dimensions [33–36], experimental implementations are still
limited by the required physical resources.

The optical approaches to increasing the complexity of a linear QW
showed that the dimensionality of the system is effectively expanded
by using two walkers, keeping the lattice one-dimensional [31,37,38].
While adding additional walkers to the system is promising, introducing
conditioned interactions and in particular controlled non-linear inter-
actions at the single photon level is technologically very challenging.
In this paper, instead of two-walker in 1D QW, we propose a feasible
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scheme to implement the ‘‘real’’ 2D QW in position space with a single
walker via linear optical elements. By combining the spatial modes and
polarizations of photons, we expand the dimensions of the coin states
from two to four and implement arbitrary four-side coin. The photons
propagate along transverse and longitudinal directions based on both of
their polarizations and positions. Considering the present technologies
of linear optics, we can implement arbitrary 2D coin rotation and our
scheme of 2D QWs is highly scalable.

In our proposal, QWs are implemented by shifting the position of
photons in their spatial modes, compared to other realizations which
have employed ‘‘abstract’’ position spaces, such as the time domain
with circulating light pulse, or the phase space with trapped ions, or
the transverse modes of the beam [39–41]. ‘‘Real’’ position space here
means that the walkers (photons) propagates in their spatial modes
instead of ‘‘abstract’’ position space. In the experiment in Ref. [41], a
discrete-time QW taking place in the orbital angular momentum space of
light, both for a single photon and for two simultaneous photons. Their
experimental realization of QWs is different compared to our proposal,
First, the whole process develops in a single light beam and there is no
interferometer. Second, instead of ‘‘real’’ position space, they employ the
‘‘abstract’’ position space, i.e., the transverse modes of the beam. Third,
it is challenging to realize inhomogeneous QWs in their experimental
setup.
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Fig. 1. Implementation of the first step of a 2D QW, involving state initialization (SI), coin flipping (CP), conditional position shift (PS) and expansion of dimensionality
(ED). The hollow circles indicate the states appears during the expansion stage. Their coefficients are zero for the first step and will be filled in after the coin flipping
for the next step.

The paper is organized as followings. First, we give a brief review of
1D and 2D QWs. Then, we propose a feasible scheme to implement 2D
QW via bulk optical interferometry. Finally, we summarize and discuss
the advantages of our scheme.

2. Quantum walks in two dimensions

To define a 1D QW, we need a 2D coin registering with two states,
one for each direction: |0⟩ and |1⟩. The locations of the walker on the 1D
lattice are labeled by the 𝑥 coordinate as |𝑥⟩. At each step, we perform
an arbitrary single-qubit rotation 𝐶1D on the coin state and then evolve
the walker+coin system according to the state of the coin. The unitary
operator of single-step of 1D QWs [42] is in the form

𝑈1D =
∑

𝑥
(|𝑥 + 1⟩⟨𝑥|⊗ |0⟩⟨0| + |𝑥 − 1⟩⟨𝑥|⊗ |1⟩⟨1|) ×

(

Iw ⊗𝐶1D
)

, (1)

where Iw is the identity matrix for the walker. Assume the initial state
of the walker-coin system as |

|

𝜓0⟩. The final state of the system after 𝑡
steps evolves to |

|

𝜓𝑡⟩ =
(

𝑈1D
)𝑡
|

|

𝜓0⟩.
In the 1D QW, the walker walks on a line, while for the 2D QW,

the locations of the walker are on the 2D lattice and labeled by their
𝑥 and 𝑦 coordinate as |𝑥, 𝑦⟩. Coins register with four states, one for
each direction: |+−⟩, |++⟩, |−−⟩ and |−+⟩, where |±⟩ = (|0⟩ ± |1⟩)∕

√

2.
For the coin state |𝑖, 𝑗⟩ (𝑖, 𝑗 = +,−), the walker state |𝑥, 𝑦⟩ evolves
to |𝑥 + 𝑖, 𝑦 + 𝑗⟩. The evolution of system is governed by two unitary
operators: conditional shift operator and coin flipping operator. The
whole unitary operator of evolution can be rewritten as

𝑈2D = 𝑆
(

I𝑥 ⊗ I𝑦 ⊗𝐶2D
)

, (2)

where the 2D coin operator 𝐶2D is an arbitrary two-qubit rotation and
the conditional position shift operator of the 2D QW is

𝑆 =
∑

𝑥

∑

𝑦
(|𝑥 + 1, 𝑦 + 1⟩⟨𝑥, 𝑦|⊗ |+,+⟩⟨+,+|

+ |𝑥 + 1, 𝑦 − 1⟩⟨𝑥, 𝑦|⊗ |+,−⟩⟨+,−|

+ |𝑥 − 1, 𝑦 + 1⟩⟨𝑥, 𝑦|⊗ |−,+⟩⟨−,+|

+ |𝑥 − 1, 𝑦 − 1⟩⟨𝑥, 𝑦|⊗ |−,−⟩⟨−,−|). (3)

Coin operator 𝐶2D as an arbitrary two-qubit unitary transformation
can be decomposed using the ‘‘cosine-sine’’ (CS) decomposition [43]:

𝐶2D =

(

𝐿†
1 0
0 𝐿†

2

)

𝑈 (4)
(

𝑅1 0
0 𝑅2

)

, (4)

where

𝑈 (4) =

⎛

⎜

⎜

⎜

⎜

⎝

cos 𝜃1 0 − sin 𝜃1 0
0 cos 𝜃2 0 − sin 𝜃2

sin 𝜃1 0 cos 𝜃1 0
0 sin 𝜃2 0 cos 𝜃2

⎞

⎟

⎟

⎟

⎟

⎠

, (5)

and 𝐿†
1, 𝐿

†
2, 𝑅1 and 𝑅2 are single-qubit rotations.

Fig. 2. The 2D lattice of vertices that represent the state space of two walkers
populating a position lattice in an interferometer network.

According to this decomposition, we use Grover coin as an example.
The Grover coin 𝐶𝐺 takes the form as

𝐶𝐺 = 1
2

⎛

⎜

⎜

⎜

⎜

⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟

⎟

⎟

⎟

⎠

, (6)

and can be rewritten as

𝐶𝐺 =
(

−𝐻 0
0 𝐻

)

𝑈𝐺

(

𝐻 0
0 𝜎𝑧𝐻

)

, (7)

where

𝑈𝐺 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

, (8)

𝐻 = 1
√

2

(

1 1
1 −1

)

is Hadamard operator, and 𝜎𝑧 =
(

1 0
0 −1

)

is one of the
Pauli operators.

This decomposition is especially useful to construct an arbitrary coin
operator for 2D QWs with linear optics.

3. Implementation of 2D quantum walks with linear optics

In optical implementation of 1D QWs, we use single photon as walker
who simultaneously moves in both directions in every position, and two
polarization states {|𝐻⟩ , |𝑉 ⟩} of single photon can be used to implement
two orthogonal coin states. Whereas, for the 2D QW, however, the
walker simultaneously moves towards all the four directions. So we
need a 4D Hilbert space for the coin states. Since single photon has only
two polarization states, in 2D case, we combine two polarizations of a
photon and two possible spatial modes—left (L) and right (R), to present
four coin states. Therefore, four coin states |+−⟩, |++⟩, |−−⟩, |−+⟩, can
be represented by |𝑅𝐻⟩, |𝑅𝑉 ⟩, |𝐿𝐻⟩, |𝐿𝑉 ⟩ of single photon with two
polarizations in two possible spatial modes, respectively.
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