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A B S T R A C T

We investigate the dynamics of coherence and entanglement of vibrating qubits. Firstly, we consider a single
trapped ion qubit inside a perfect cavity and successively we use it to construct a bipartite system made of two
of such subsystems, taken identical and noninteracting. As a general result, we find that qubit vibration can lead
to prolonging initial coherence in both single-qubit and two-qubit system. However, despite of this coherence
preservation, we show that the decay of the entanglement between the two qubits is sped up by the vibrational
motion of the qubits. Furthermore, we highlight how the dynamics of photon–phonon correlations between cavity
mode and vibrational mode, which may serve as a further useful resource stored in the single-qubit system, is
strongly affected by the initial state of the qubit. These results provide new insights about the ability of systems
made of moving qubits in maintaining quantum resources compared to systems of stationary qubits.

1. Introduction

Quantum coherence and entanglement are the two most significant
features of quantum theory which emerge due to the superposition prin-
ciple [1–5]. Generally, a system consisting of two or more subsystems is
said to be entangled if its quantum state cannot be described as a simple
product of the quantum states of the constituent subsystems, which
means that the state is not separable. Nowadays, it has been recognized
that quantum entanglement is an essential tool for quantum information
processes, such as quantum teleportation [6], quantum error correc-
tion [7,8], quantum cryptography [9] and quantum dense coding [10].
On the other hand, quantum coherence is more fundamental than en-
tanglement. Quantum coherence not only exists in multipartite systems
but also in single-partite systems. Recent studies suggest that quantum
coherence can be employed as a resource, similarly to entanglement, in
various quantum information tasks [1,11–15]. Several proposals have
been recently put forward to define valid measures for quantifying
coherence in quantum systems [1,11,16–19].

Atom–photon interactions provide a convenient way to generate
and manipulate quantum coherence and entanglement. The simplest
situation of atom–photon interaction is that of a two-level atom inside
a cavity sustaining a single electromagnetic field mode, described by
the famous Jaynes–Cummings Hamiltonian [20]. In this context, it is
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well known that the coupling of an atom to the cavity field is position-
dependent, which in turn makes the atom-field coupling for a moving
atom qubit time dependent [21,22]. Recent developments in cavity
quantum electrodynamics (QED) setups offer the possibility to trap
an ion inside a cavity [23,24]. In a Paul trap system, the trapping
potential can be approximated to be harmonic. Hence, the center-of-
mass motion of an ion in such a trap behaves as a standard harmonic
oscillator. It was shown that, in the Lamb–Dicke regime, the quantized
harmonic center-of-mass motion of a single two-level ion, similar to the
Jaynes–Cummings model (JCM), can be coupled to its own internal
electronic states while the ion is interacting with a classical single-
mode traveling field [25]. This model has been then utilized for a
single two-level trapped ion inside a single-mode high-Q cavity [26],
demonstrating that the interaction of a cavity quantized mode with
the trapped ion, within the Lamb–Dicke approximation, can lead to
the generation of Greenberger–Horne–Zeilinger states. Owing to the
analogy between an ion vibrating in a trapping potential and an ion in-
teracting with a quantized cavity field, many effects and ideas observed
in the context of cavity QED, such as quantum state engineering [27–
33], quantum computing [34,35] and quantum state endoscopy [36,37]
can be extended to the trapped ion models. Moreover, the physics
of trapped ions has allowed researchers to propose some schemes
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for generating entanglement. For instance, a scheme for generating a
phonon–photon Bell-type state has been introduced [38] and the time
behavior of entanglement between cavity mode and vibrational mode
(mode–mode entanglement) for a system of two trapped ions inside
a leaky cavity has been investigated [39]. A further study has been
carried out concerning mode–mode entanglement in a system made of
a cluster of 𝑁 trapped ions interacting dispersively with a quantized
electromagnetic field [40].

In spite of these studies, the evolution of coherence and mode–mode
correlations of a single trapped ion qubit has not been investigated so
far. Furthermore, entanglement and coherence dynamics of independent
trapped vibrating qubits inside separated cavities has remained unex-
plored. Since separated qubit subsystems represent one of the preferred
scenarios for quantum networks, the evolution of such systems deserves
a dedicated case study. Motivated by these considerations, we first focus
on a system containing a trapped single two-level ion (qubit) inside
a high-Q cavity which is interacting with its vibrational degrees of
freedom and cavity modes. Subsequently, we extend our analysis to
a system composed of two of such subsystems, which are separated
and initially entangled. We strive to comprehend how the center-of-
mass motion of the qubits influences the dynamics of coherence and
entanglement. We also examine the effect of qubit initial state, intensity
of both cavity and vibrational modes on the mode–mode correlation.

The paper is organized as follows. In Section 2, we present the
results about the effect of qubit, cavity and vibrational parameters
on the dynamics of ion qubit coherence and mode–mode correlation.
In Section 3, we extend the study to the bipartite system, analyzing
the evolution of entanglement and coherence between two separated
identical trapped qubits for different values of the parameters. In
Section 4 we give our conclusions.

2. Single-qubit system

The system under investigation is a single two-level ion (qubit)
trapped in a linear Paul trap and located inside a single-mode high-
Q cavity. Owing to the confinement of the qubit in the Paul trap,
the qubit vibrates with a high frequency comparable to or larger than
the fundamental frequency of the cavity field. We assume that the
trap axis coincides with the axis of the cavity so that, as already
discussed [26,38], the internal states of the qubit (namely, the excited
state |𝑒⟩ and the ground state |𝑔⟩) are coupled to both the cavity
field (cavity mode) and the vibrational degrees of freedom (vibrational
mode). The Hamiltonian corresponding to such a system is given by

𝐻̂ = 𝐻̂0 + 𝐻̂𝑖𝑛𝑡,

𝐻̂0 =
ℏ𝜔0
2
𝜎𝑧 + ℏ𝜔v

(

𝑎̂†𝑎̂ + 1
2

)

+ ℏ𝜔
(

𝑏̂†𝑏̂ + 1
2

)

,

𝐻̂𝑖𝑛𝑡 = ℏ𝜅 sin[𝜂(𝑏̂ + 𝑏̂†)](𝜎̂+ + 𝜎̂−)(𝑎̂ + 𝑎̂†), (1)

where 𝑎̂†(𝑎̂) is the creation (annihilation) operator for the cavity mode
with frequency 𝜔, 𝑏̂†(𝑏̂) denotes the creation (annihilation) operator of
the center-of-mass vibrational motion of the qubit with frequency 𝜔v,
𝜎̂+ = |𝑒⟩⟨𝑔|, 𝜎̂− = |𝑔⟩⟨𝑒| and 𝜎̂𝑧 = |𝑒⟩⟨𝑒| − |𝑔⟩⟨𝑔| are the qubit operators,
𝜅 is the coupling constant between cavity mode and qubit. Moreover, 𝜂
represents the Lamb–Dicke parameter.

We suppose the trapped qubit is constrained in the Lamb–Dicke
regime, and the Lamb–Dicke parameter meets the condition 𝜂 ≪ 1. In
this regime, 𝐻̂𝑖𝑛𝑡 can be approximated by the expansion to the first order
in 𝜂 as

𝐻̂𝑖𝑛𝑡 = ℏ𝜅𝜂(𝑎̂ + 𝑎̂†)(𝜎̂+ + 𝜎̂−)(𝑏̂ + 𝑏̂†). (2)

In the following, we investigate a special case in which the cavity
field is tuned to the first red sideband: 𝜔0 − 𝜔 = 𝜔v. Under this
condition, by dropping the rapidly oscillating terms, the interaction
picture Hamiltonian becomes

𝐻̂𝑟
𝐼 = ℏ𝜅𝜂(𝜎̂+𝑎̂𝑏̂ + 𝜎̂−𝑎̂†𝑏̂†). (3)

Let us take the system initially in a product state with the ion qubit
in a coherent superposition of its internal states |𝜓⟩ = 𝐶𝑒|𝑒⟩ + 𝐶𝑔|𝑔⟩

(|
|

𝐶𝑒||
2 + |

|

|

𝐶𝑔
|

|

|

2
= 1) while the qubit center-of-mass motion and the

cavity field are, respectively, in the coherent states |𝛼⟩ =
∑

𝑚𝑤𝑚|𝑚⟩
and |𝛽⟩ =

∑

𝑛𝑤𝑛|𝑛⟩, where |𝑚⟩, |𝑛⟩ are the excitation number (Fock)
states while 𝑤𝑚 = 𝑒−|𝛼|2∕2|𝛼|𝑚∕

√

𝑚! and 𝑤𝑛 = 𝑒−|𝛽|2∕2|𝛽|𝑛∕
√

𝑛! denote
the coherent distribution of the number states: |𝛼|2 is the mean value of
the photon number in the cavity field and |𝛽|2 is the mean value of the
phonon number. The overall initial state is thus

|𝛹tot (0)⟩ =
∑

𝑚
𝑤𝑚|𝑚⟩⊗

∑

𝑛
𝑤𝑛|𝑛⟩⊗ (𝐶𝑒|𝑒⟩ + 𝐶𝑔|𝑔⟩), (4)

so that, at any later time, the state vector of the system can be written
as

|𝛹tot (𝑡)⟩ =
∑

𝑚,𝑛
{[𝐶𝑒𝐴𝑚,𝑛(𝑡) + 𝐶𝑔𝐵𝑚,𝑛(𝑡)]|𝑚⟩|𝑛⟩|𝑒⟩

+ [𝐶𝑔𝐶𝑚,𝑛(𝑡) + 𝐶𝑒𝐷𝑚,𝑛(𝑡)]|𝑚⟩|𝑛⟩|𝑔⟩} (5)

The time-dependent coefficients 𝐴𝑚,𝑛(𝑡), 𝐵𝑚,𝑛(𝑡), 𝐶𝑚,𝑛(𝑡) and 𝐷𝑚,𝑛(𝑡)
can be found by substituting Eq. (5) into the Schrödinger equation
𝑖ℏ𝜕|𝛹tot (𝑡)⟩∕𝜕𝑡 = 𝐻̂𝑟

𝐼 |𝛹tot (𝑡)⟩ that gives

𝐴𝑚,𝑛(𝑡) = 𝑤𝑚𝑤𝑛 cos[𝜂𝜅𝑡
√

(𝑚 + 1)(𝑛 + 1)],

𝐵𝑚,𝑛(𝑡) = −𝑖𝑤𝑚+1𝑤𝑛+1 sin[𝜂𝜅𝑡
√

(𝑚 + 1)(𝑛 + 1)],

𝐶𝑚,𝑛(𝑡) = 𝑤𝑚𝑤𝑛 cos[𝜂𝜅𝑡
√

𝑚𝑛],

𝐷𝑚,𝑛(𝑡) = −𝑖𝑤𝑚𝑤𝑛 sin[𝜂𝜅𝑡
√

𝑚𝑛]. (6)

Taking the partial trace of the global density matrix 𝜌tot (𝑡) =
|𝛹tot (𝑡)⟩⟨𝛹tot (𝑡)| over the cavity field and vibrational mode degrees of
freedom, the reduced density matrix of the qubit in the basis {|𝑒⟩, |𝑔⟩}
results to be

𝜌q(𝑡) =
(

𝜌𝑒𝑒(𝑡) 𝜌𝑒𝑔(𝑡)
𝜌𝑔𝑒(𝑡) 𝜌𝑔𝑔(𝑡)

)

, (7)

where

𝜌𝑒𝑒(𝑡) =
∑

𝑚,𝑛
|𝐶𝑒𝐴𝑚,𝑛(𝑡) + 𝐶𝑔𝐵𝑚,𝑛(𝑡)|

2,

𝜌𝑔𝑔(𝑡) =
∑

𝑚,𝑛
|𝐶𝑔𝐶𝑚,𝑛(𝑡) + 𝐶𝑒𝐷𝑚,𝑛(𝑡)|

2 = 1 − 𝜌𝑒𝑒(𝑡),

𝜌𝑒𝑔(𝑡) =
∑

𝑚,𝑛
[(𝐶𝑒𝐴𝑚,𝑛(𝑡) + 𝐶𝑔𝐵𝑚,𝑛(𝑡))

× (𝐶𝑔𝐶𝑚,𝑛(𝑡) + 𝐶𝑒𝐷𝑚,𝑛(𝑡))∗] = 𝜌∗𝑔𝑒(𝑡). (8)

2.1. Coherence dynamics of the qubit

We now study the effect of cavity and vibrational parameters on
the time evolution of coherence in our qubit system. Many bona-fide
quantifiers of quantum coherence have been introduced [1]. Among
these quantifiers, we adopt an intuitive measure which relies on the off-
diagonal elements of the target quantum state which is defined by [12]

𝜁 (𝑡) =
∑

𝑖,𝑗 (𝑖≠𝑗)
|𝜌𝑖𝑗 (𝑡)|, (9)

where 𝜌𝑖𝑗 (𝑡) (𝑖 ≠ 𝑗) are the off-diagonal elements of the system density
matrix 𝜌(𝑡).

We easily obtain the single-qubit coherence evolution by using 𝜁 (𝑡)
with the density matrix 𝜌q(𝑡) of Eq. (7). Fig. 1 illustrates the effect
of intensity of cavity and vibrational modes on the time evolution of
coherence starting from a maximally coherent state (𝜁 (0) = 1) in the
basis {|𝑒⟩, |𝑔⟩}, for a stationary qubit (column I) and vibrating qubit
(column II). As can be seen when the qubit is motionless, increasing
the intensity of the cavity field (larger mean photon number) preserves
the initial coherence for longer times. However, coherence preservation
is more effective for vibrating qubits. In fact, as displayed in the plots of
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