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Since the measurement of spatial coherence requires multiple sampling to acquire the complex coherence factor
of a wavefield, it is convenient to accomplish such dynamic work by a non-redundant multi-slit through a
programmable device such as spatial light modulator (SLM). In this study, we examined the influence of SLM-like
pixelated structure, parameterized by whose fill factor, on both intensity distribution (first-order statistics) and
complex coherence factor (second-order statistics). Based on the generalized Van Cittert-Zernike theorem that

as the source satisfied the quasi-homogeneous condition, the coherence factor of the wavefield was irrelevant to
the pixelated sampling structure. The inference was validated by a SLM-based experiment from a pseudothermal
light source. We expected this work to be useful for future dynamic coherence measurement.

1. Introduction

Wavefield correlation has attracted much attention not only its
characteristic plays an essential role in interference and diffraction
physics but also opens the window for the unconventional imaging [1-
3]. Recently, Kondakci et al. [4] and El-Halawany [5] achieved a
far-field lensless identification by measuring the complex coherence
factor of the light scattering off an obstructive object. Among such
remarkable works, one important issue lies in how to retrieve the
statistical properties of a wavefield through the sampling process.

Typically, the complex coherence factor of a wavefield could be
obtained by measuring the fringe visibility of the interference pattern
based on the Young’s double-slit experiment [6]. Afterward, a number
of optical masks rather than Young’s double-slit were proposed with
corresponding signal analyses for the coherence measurement, such
as the two-dimensional interferogram analysis [7-11], marginal power
spectrum approach [12-15], redundant and non-redundant arrays [16—
21]. No matter what signal was analyzed to retrieve the statistical
behavior of the wavefield, in terms of efficiency and convenience of
experiment, nowadays apparatus was developed toward the dynamic
sampling via the programmable control like spatial light modulators
(SLMs), digital micromirror devices (DMMDs) or liquid crystal displays
(LCDs) [22-26]. Obviously, the pixelated structure will definitely in-
fluence the diffraction, resulting in the different intensity distribution
(usually called the first-order coherence property in statistical optics)
in comparison with the conventional continuous slits. However, to our
knowledge, no work has discussed whether these pixelated devices
affect the results of second-order measurement or not.
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Therefore, in this study, we were asking ourselves that what impact
of the pixelated structure in current dynamic devices upon the second-
order of the wavefield. A series of theoretical and numerical analysis
were conducted. It was found that, although different shapes of sampling
mask (continuous or pixelated masks) did affect the first-order statistics
of a wavefield, the second-order property would only depend on the
source as if the wavefield obeyed the quasi-homogeneous and Schell-
model assumption, which were consistent in most of practical cases.
The theoretical analysis as well as numerical results were examined by
a SLM-like experiment, where the incoherent source was implemented
by passing laser light through a moving diffuser as the pseudothermal
light source.

This paper is organized as follows. The analysis of pixelated and
continuous structures based on the generalized Van Cittert—Zernike
theorem were conducted in Section 2. The wavefield intensity were
addressed in both space and spatial-frequency domain. The numerical
simulation was described in Section 3, where a thousand random phase
screens were utilized to ensure sufficient sampling points to characterize
the partial coherence phenomenon of light. The experimental results
were provided in Section 4. Finally, the validation of pixelated sampling
was discussed in Section 5.

2. Theory

In this section, we reviewed the generalized Van Cittert—Zernike
theorem as the beginning. With pixelated and continuous mask in
sampling process, we analyzed both the first-order and second-order
properties in space and spatial-frequency domains, respectively.
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2.1. The generalized Van Cittert—Zernike theorem

According to the generalized Van Cittert-Zernike theorem, the mu-
tual intensity function J of an incoherent and quasi-monochromatic
source I(&,n) at the observation plane could be derived by the Fourier
transform of the source distribution as defined:
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where u (4¢, An) was the complex coherence factor of the light source,
] was the central wavelength, z was the propagation distance, (,#)
denoted the coordinates in the source plane, and (x,y) denoted the
coordinates in the observation plane. The variables (£, 7), (4¢, 4n), (%, y),
and (4x, Ay) were defined as & = (& +&) /2, 71 = (n, +m) /2, A =
& =&, An=n—ny, X = (xl +x2) /2, 5= (Y1 +y2) /2, Ax = x, —x;, and
Ay =y, —y; [2]. According to Goodman’s work, when the u (4¢, An) was
much narrower in the (4, 4y) plane than the I (&,7) was in the (&,7)
plane, Eq. (1) could be simplified and normalized to Eq. (2) as shown
below,
eJe [ 1 (E7)exp []% (AxE + Ayﬁ)] dédij
%1 (&) dédiy
where u(4x, Ay) was the complex coherence factor of the observation
field. The phase factor ¢ represented the phase difference between
two sampling points at the observation plane, usually neglected as a
multiplicative constant in far-field or symmetric sampling circumstance.
There were two points that should be noted in Eq. (2). First, the
complex coherence factor at the observation plane was merely a function
of location difference (4x, Ay), which implied that the wavefield satisfies
the Schell-model source [1,2]. Second, this equation also held for a
partially coherent wavefield as long as the width of its intensity distri-
bution 7 (&,7) in the (&,7) plane was much larger than the width of its
complex coherence factor u (A&, An) in the (4¢&, An) plane. The condition
was called quasi-homogeneous and was suitable in most practical cases
since the coherence area of light source was usually much smaller than
the source area, as a consequence of the reciprocal width relations for
the Fourier transform [1,2].
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2.2. Analysis of pixelated and continuous masks in space domain

To compare the effectiveness of pixelated and continuous masks on
the measurement of complex coherence factor, for simplicity, we started
from the common double-slit in one-dimensional case. Nonetheless, the
derivation was applicable to any other type of masks such as redundant
or non-redundant structures.

The first row of Fig. 1 showed the geometrical shapes of both
pixelated (right column) and continuous (left column) double-slit with
the same aperture diameter a and slit spacing d. For the pixelated slit, p
represented the pixel pitch and f), represents the fill factor of the device
(0 < £, < 1) so that the effective aperture in each pixel was pf,,.

With quasi-homogeneous source that the aperture size at the ob-
servation plane was much smaller than the intensity distribution. It
could be found that the intensity variation of the wavefield within each
aperture was insignificant so that the uniform wavefields sampled by
the double-slit were expressed in Eq. (3):

Uc(x)z[rect(;—‘)]®[5(x+g)+5(x—g)], (3a)
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where x represented the spatial coordinate in the slit plane (observation
plane), x, described the position vector of the nth pixel, §(.) was the
Dirac’s delta function, and ® denoted the convolution operation. The
subscripts ¢ and p of the wavefield U under measurement represented
the continuous and pixelated sampling, respectively. Each slit was
consisted of N pixels, here only three pixels was shown in Fig. 1 as
the schematic illustration.

Since the variations of the wavefield within each aperture were
insignificant, these wavefields sampled by each pixel could be approxi-
mated as equal amount. Hence, the far-field intensities at the focal plane
of a 2f-system were derived in Eq. (4),
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where u represented the coordinate in the corresponding Fourier plane,
I, denoted the field intensity sampled by each single-slit, and sinc (1) =
sin (zu) /zu. It was noticed that, due to insignificant variations within
each aperture, the correlations between every two pixels were negligible
so that the coefficients of every mutual terms became unity in Eq. (4b).
Otherwise the coefficients of each mutual terms would be u [(n — m) p],
which arose from the second-order coherence within a single-slit.

For the continuous double-slit measurement, I, (Eq. (4a)), the
bracket was the interference fringe induced by the double-slit, en-
veloped by the diffraction of the single-slit. On the contrary, pixelated
structure (Eq. (4b)) would broaden the diffractive envelope as well
as introduce another interference signal into the interferogram. These
interference signals affected the first-order properties of wavefield
and could be analyzed effectively by the multi-aperture sampling as
mentioned in previous literatures [18-20].

2.3. Analysis of pixelated and continuous masks in spatial-frequency domain

An alternative approach to retrieve the complex coherence factor of a
wavefield could resort to its interferogram in spatial-frequency domain,
as in Eq. (5), whereas the all classes of aperture pairs of the mask would
appear by means of the spectral analysis.
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where f, represented the coordinate in spatial-frequency domain of the
observation plane and A (.) denoted the Fourier transform of sinc? ().
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