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A B S T R A C T

In this paper, we investigate the propagation dynamics of circular Airy beams (CAB) in a medium with radial
parabolic potential both analytically and numerically. Our results show that CAB will exhibit periodic abruptly
autofocusing behavior under the action of radial parabolic potentials. Within every period, we interestingly
observe a novel autodefocusing behavior, which manifests that optical peak intensity abruptly decreases by
several orders of magnitude. In particular, such unique ‘‘autofocusing-to-autodefocusing’’ effect can lead to the
formation of a series of elegant periodic optical bottles having paraboloidal shapes during the whole propagation
process. Our findings indicate that CAB is expected to provide a unique tool in optical micromanipulation and
optical trapping.

1. Introduction

During the past few years, the researches of novel CAB have attracted
a great deal of attention due to its intriguing abruptly autofocusing char-
acteristics even without invoking nonlinear effects. In 2010, the concept
of such beam has been introduced theoretically by Efremidis et al. [1]
and then further confirmed experimentally by Papazoglou et al. in the
field of optics [2]. Because of the unique properties, such novel CAB
recently finds numerous unprecedented potential applications in optical
micromanipulation [3,4], generation of spatiotemporal light bullet [5]
and formation of optical filament [6]. Therefore, the propagation and
manipulation of CAB have recently stirred widespread interest in the
scientific community. For instance, a variety of approaches including
an annular aperture [7], an apodization mask [8] or a modulation
phase factor [9–11] have been proposed to enhance/suppress focus
intensity, or engineer the accelerated path/focus pattern, To control
the propagation dynamical behaviors of CAB, some other physical
mechanisms such as optical vortices [12–15], nonparaxial effect [16]
and optical lattices [17] have also been introduced by some researchers
both experimentally and theoretically. Very recently, we broadened the
conventional family of CAB through imposing other physical parameters
such as a radial chirp and a cone angle, showing that the autofocusing
effect of beams can be remarkably enhanced, suppressed, and even
completely eliminated, depending on the initial condition of the input
parameters [18,19]. Subsequently, we further constructed another new
kind of CAB which is modified by a quadratic phase modulation in spec-
tral regime. Our analysis disclosed that such modified CAB experiences
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a dual abruptly focusing behavior having the same focus intensity as
well as size of focus spot, thus inducing the formation of a paraboloidal
optical bottle [20].

Recently, the external potential as another new physical strategy
is extensively employed to control the propagation of Airy beams. For
instance, Efremidis et al. demonstrated that the Airy beams can travel
according to any predefined trajectory by controlling different linear
index gradients [21]. Liu et al. disclosed that the self-deflection of the
plasmonic Airy beams can be accelerated, compensated or even reversed
without compromising the self-healing characteristics in linear optical
potentials [22]. Chávez-Cerda et al. further investigated the propagation
of Airy beams in linear potentials both theoretically and experimentally,
showing that it is possible to just reduce the performance of self-
acceleration to zero value [23]. However, up to now, most of the
previous researches are only confined to the case of asymmetric Airy
beams. For the case of CAB, both Hwang and Zhong disclosed that both
focus positions and focus lengths can be controlled by appropriately
tuning linear optical potentials [24,25]. Recently, Zhang et al. further
investigate the propagation behaviors of some special beams mainly
including Hermite–Gauss, Laguerre–Gauss, Bessel–Gauss and finite en-
ergy Airy beams in parabolic optical potentials while the novel CAB
still remain unexplored [26–28]. Meanwhile, we have known that the
CAB possesses unique abruptly autofocusing characteristics even in the
linear regime, when compared to the case of conventional beams [1].
Therefore, we believe that the dynamics of CAB in parabolic potentials
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will become more intriguing and interesting. Inspired by these foregoing
investigations, in this paper we present a comprehensive research on
the propagation of CAB in media with external parabolic potentials,
focusing specifically on the unusual abruptly focusing behaviors. The
rest of this paper is organized as follows. In Section 2 we will derive
an approximate solution to the paraxial physical model with external
parabolic potentials, and then give a brief analysis. In Section 3, we will
numerically discuss dynamical behavior of CAB based on the split-step
Hankel transform. Finally, a brief conclusion will be present in Section 4.

2. Analytical analysis

Let us start by considering a radially symmetric optical beam prop-
agating in linear media with external potentials. Under the paraxial
approximation, the physical model for describing the behavior of the
slowly-varying envelope 𝐸(𝑟, 𝑧) of the optical electric field can be given
by [21–28]
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− 𝑖𝑉 (𝑟)𝐸. (1)

The parameter 𝑧 accounts for the propagation distance scaled by the
Rayleigh lengths 𝑘𝑥20, and the parameter 𝑟 accounts for the radial
coordinate scaled by an arbitrary transverse width 𝑥0. Here, 𝑘 = 2𝜋𝑛∕𝜆
is the optical wavenumber, and 𝜆 is the wavelength in vacuum and 𝑛 is
the refractive index. The first and second terms in the right-hand side of
Eq. (1) account for diffraction and the external potential, respectively.
Based on the refractive-index distribution of media, the corresponding
external potential function 𝑉 (𝑟) mainly includes linear potentials, the
parabolic potentials and the spherical potentials et al. In this paper, we
only consider the parabolic potential given by 𝑉 (𝑟) = 0.5𝑝2𝑟2 where
𝑝 represents the depth of potential since it has the unique ability to
induce the occurrence of perfect periodic evolution of optical beam [26–
33]. Generally speaking, both strongly nonlocal media and gradient-
index media are widely applied to construct such optical parabolic
potential [29–33]. Therefore, the depth of potential can be controlled
through tuning optical power for the former case or the distribution
of refractive index for the latter case. The initial CAB in cylindrical
coordinate is defined as [1]
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where 𝐴𝑖 (⋅) denotes the well-known Airy function, 𝑟0 denotes the input
radial position of the main lobe of CAB, and the parameter 𝛼 denotes the
exponential truncation factor, which ensures that CAB can be realized
experimentally. In this paper, the split-step Hankel transform will be
employed to retrieve the accurate numerical solution [34,35]. Following
the standard procedure of Hankel transform, the diffraction term in
Eq. (1) is treated in term of the following integral pair
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𝑔0 (𝑘, 0) = 2𝜋 ∫

∞

0
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where the parameter 𝑘 represents the radial frequency, 𝐽0 (⋅) represents
the first-order Bessel function, and 𝑔0 (𝑘, 0) represents the Hankel trans-
form of the initial field 𝐸0 (𝑟, 0).

As it is well known, the exact solution of Eq. (1) does not exist
if the expression of CAB [Eq. (2)] is employed to be as the initial
condition [1,7–11]. In this paper, we will first derive an approximate
analytical solution to help us intuitively estimate the unusual dynamical
behavior of CAB before performing numerical simulations. When the
radius of main lobe 𝑟0 is big enough, most of the optical energy is
essentially located far from the central part of the beam. Basing on our
recent theories [18–20], we can approximately take the large ring-Airy
beam as quasi 1-D structure through neglecting the first derivative term
on the right-hand side of Eq. (1). Therefore, borrowing recent results of
1-D structure asymmetric Airy beam in Ref. [26], we easily derive the

2-D structure spatial analytical expression to approximately describe the
dynamical behaviors of the CAB as follows
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where 𝑏 = 𝑝 cot (𝑝𝑧) ∕2 and 𝐾 = 𝑝𝑟∕ sin (𝑝𝑧). Obviously, from Eq. (5), we
deduce that the CAB accelerates along the following fashion in the 𝑟–𝑧
plane

𝑟 =
sin 2 (𝑝𝑧)

4𝑝2 cos (𝑝𝑧)
− 𝑟0 cos (𝑝𝑧) . (6)

Based on (6), we can further obtain a series of special positions of optical
beam propagation by setting 𝑟 = 0 as
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where the parameter 𝑚 is a nonzero integer. Up to now, we have
arrived at the central conclusions of analytical expression in this paper,
being the closed-form approximation. In fact, by comparison with the
latter simulation, we easily know that the parameter 𝑧(𝑓 )𝑚 corresponds
to the conventional autofocusing point while the parameter 𝑧(𝑑)𝑚 cor-
responds to the novel autodefocusing point where the central intensity
abruptly decreases. Therefore, for the purpose of convenient description
latter, we take the parameters 𝑧(𝑓 )𝑚 and 𝑧(𝑑)𝑚 as the focus, and defocus
positions, respectively. Obviously, such analytical solution allows one
to intuitively capture some main physical effects and estimates the
propagating behaviors with much shorter computational times required
for the simulations. First, one of the most striking features is that the
approximate solution is periodic function as propagation distance with
the period 𝑇 = 𝜋∕𝑝. Therefore, when the propagation distance increases
from the first position 𝑧1 to the second position 𝑧2 = 𝑚𝑇 + 𝑧1, from
Eq. (5) we obtain 𝐸(𝑟, 𝑧1) = 𝐸(𝑟, 𝑧2). More interestingly, the CAB is
found to perform periodic autofocusing and autodefocusing behaviors
under the action of radial parabolic potentials since both 𝑧(𝑓 )𝑚 and
𝑧(𝑑)𝑚 are periodic functions. Second, from Eq. (5) we easily arrive at
𝐸
(

𝑟, 𝑧(𝑐)𝑚 + 𝑙
)

= 𝐸
(

𝑟, 𝑧(𝑐)𝑚 − 𝑙
)

with 𝑧(𝑐)𝑚 = (𝑚 − 1∕2) 𝑇 for a given length
𝑙, implying that optical beams at 𝑧 = 𝑧(𝑐)𝑚 +𝑙 and 𝑧 = 𝑧(𝑐)𝑚 −𝑙 exhibit perfect
symmetric behavior with respect to the central line 𝑧(𝑐)𝑚 for every period.
Third, the inspection of Eqs. (7)–(8) further shows that both focus and
defocus positions monotonically decrease with the increase of 𝑝. On the
other hand, the former monotonically decreases with the increase of
𝑟0 while the latter increases monotonically. Finally, it is clear to see
that the period 𝑇 only depends on 𝑝, but is completely independent
on 𝑟0. Here, we need to stress that the evolution equation of the CAB
[Eq. (5)] is an approximate expression because we make the following
approximation 𝜕2𝐸∕𝜕𝑟2+𝜕𝐸∕𝑟𝜕𝑟 ≈ 𝜕2𝐸∕𝜕𝑟2 in the derivation. Therefore,
the accurate numerical results based on the split-step Hankel transform
will be used to check the validity of our analytical solution in the next
section. In particular, It is worthwhile to remark that Eqs. (5)–(8) are
only suitable to describe the propagation characteristics of the CAB far
from the focusing point since the approximation used in deriving them
cannot be made near focus points. Therefore, our analytical solution
cannot help us estimate the abrupt change of optical intensity, which
will be discussed by employing the numerical approach latter.

3. Numerical analysis

In this section, we will further explore the propagation properties
of the CAB under the action of radial parabolic potential numerically
by using the split-step Hankel transform [34,35]. In the following
discussion, we assume 𝑥0 = 1 mm, 𝑟0 = 8 and 𝛼 = 0.2 throughout
the paper unless otherwise specified. In addition, the input power for
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