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A B S T R A C T

During the calibration of the system matrix of a Stokes polarimeter using reference polarization states (RPSs) and
pseudo-inversion estimation method, the measurement intensities are usually noised by the signal-independent
additive Gaussian noise or signal-dependent Poisson shot noise, the precision of the estimated system matrix
is degraded. In this paper, we present a paradigm for selecting RPSs to improve the precision of the estimated
system matrix in the presence of both types of noise. The analytical solution of the precision of the system matrix
estimated with the RPSs are derived. Experimental measurements from a general Stokes polarimeter show that
accurate system matrix is estimated with the optimal RPSs, which are generated using two rotating quarter-wave
plates. The advantage of using optimal RPSs is a reduction in measurement time with high calibration precision.

1. Introduction

Stokes polarimeters, also termed as polarization state analyzers
(PSAs), are powerful tools for characterizing the states of polarization
of target [1–3]. To get full Stokes parameters [𝑆0, 𝑆1, 𝑆2, 𝑆3], a PSA
should have 𝑁𝐵 ≥ 4 different analysis states, and these states form a
so-called system matrix 𝐵 with a dimension of 𝑁𝐵 × 4 [1]. Before using
the PSA for practical measurement, its practical system matrix 𝐵 needs
to be estimated using a polarization state generator (PSG) that generates
𝑁𝐴 ≥ 4 different reference polarization states (RPSs) [4,5]. These states
form a RPS matrix 𝐴 with a dimension of 𝑁𝐴 × 4. The system matrix 𝐵
is estimated using pseudo-inversion estimation of the well-known RPS
matrix 𝐴 and the measured intensity matrix 𝐼 with a dimension of 𝑁𝐴
× 𝑁𝐵 . The RPS method for calibration has the potential of accounting
for higher order effects of systematic errors such as multiple reflections
between or within optical devices, incorrectly oriented crystals in re-
tarders, imperfect polarizers, and residual birefringence [4,5]. However,
there are no guide theory for the selection of RPSs. Most of RPSs are
generated using a simple PSG setup of easy implementation [6–10].

It is noted that the intensities, measured by the PSA during cali-
bration, usually are perturbed by several types of noise such as signal-
independent detector noise, signal-dependent shot noise, or compound
noise [11]. The estimation precision of the system matrix is then limited
by noisy data. Up to now, most researches only focus on the optimization
of the PSA’s analysis states in the presence of noise [12–21]. For
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example, the optimal estimation of samples’ Muller matrix by selecting
PSG and PSA in the presence of both Gaussian and Poisson noise are
presented [21]. The closed-form solutions of estimation precision show
that the optimal PSG and PSA architectures that minimize and equalize
the estimation variances of the sample’s Muller matrix are based on
spherical designs of order 2 or 3. These spherical designs have ever
been identified analytically [14–16] and numerically [17–19] during
the optimization of the PSA [10–12]. A spherical design of order 𝑡 is a set
of 𝑁𝐴 points on the surface of the unit sphere for which the normalized
integral of any polynomial of degree 𝑡 or less is equal to the average
taken over the 𝑁𝐴 points [14]. The platonic solids such as tetrahedron,
octahedron, cube, icosahedron, dodecahedron all belong to spherical
designs [16,17].

However, to our best knowledge, the choice of RPSs for minimizing
and equalizing the estimation variance of the system matrix of a
general PSA has not been explored, and the corresponding estimation
performance remains to be quantified. In this paper, we will estimate
the practical system matrix of a general PSA in linear optics with
pseudo-inversion method. The closed-form expressions of the estimation
precision in the presence of both Gaussian and Poisson noise are
derived. It is demonstrated that, for calibrating arbitrary system matrix
(regardless of optimal ones [12–19], or not [8,22–27]), the optimal RPSs
that can minimize and equalize noise variance are based on spherical
designs of order 2 or 3. The important feature of the optimal RPSs is
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that the sum of the matrix elements of any columns is equal to zero
except for the first column. We verify the analytical solutions with Monte
Carlo simulations and experiments at first time. The architectures for
generating the optimal RPSs are presented. Experimental results show
that the system matrix estimated with the proposed RPSs has immunity
to kinds of noise such as, but not limit to, Gaussian and Poisson noise.

2. Theory

2.1. Calibration model

The calibration system usually comprises an unpolarized light source
with intensity 𝐼0, a PSG and a PSA. The RPSs and analysis states
generated by the PSG and PSA, respectively, are stacked row-wise to
form the RPS matrix 𝐴 and the system matrix 𝐵. The matrix 𝐴 (𝐵) thus
has the dimensions 𝑁𝐴 × 4 (𝑁𝐵 × 4). The intensities acquired by the
PSA are

𝐼 = 𝐼0𝐵𝐴
𝑇 , (1)

where 𝐼 is a 𝑁𝐵 × 𝑁𝐴-dimensional intensity matrix representing 𝑁𝐵𝑁𝐴
measurements, and the superscript 𝑇 indicates transpose. In the follow-
ing, we will estimate the system matrix 𝐼0𝐵, and define a vector operator
by stacking the matrix elements row-wise to form a vector. Then Eq. (1)
is rewritten as

𝐕𝐼 = [𝐸 ⊗𝐴]𝐕𝐵 , (2)

where ⨂ represents the Kronecker product [28], 𝐸 is a 𝑁𝐵× 𝑁𝐵-
dimensional identity matrix, 𝐕𝐵 = ([𝑉𝐵]1, …, [𝑉𝐵]4𝑁𝐵

) is a 4𝑁𝐵-
dimensional analysis state vector, and 𝐕𝐼 = ([𝑉𝐼 ]1, …, [𝑉𝐼 ]𝑁𝐴𝑁𝐵

) is
a 𝑁𝐴𝑁𝐵-dimensional intensity vector by reading the corresponding
matrix elements in the lexicographic order.

In this paper, we consider that the measurement vector 𝐕𝐼 is
disturbed by two types of common noise sources: additive Gaussian
noise or Poisson shot noise, respectively. The analysis state vector 𝐕𝐵
is estimated from the noisy measurements using pseudo-inverse (PI)
estimator ⌢𝐕𝐵 [21],

⌢𝐕𝐵 = 𝑃𝐕𝐼 with𝑃 =
(

[𝐸 ⊗𝐴]𝑇 [𝐸 ⊗𝐴]
)−1 [𝐸 ⊗𝐴]𝑇 , (3)

where 𝑃 is the pseudoinverse of the 4𝑁𝐵× 𝑁𝐴𝑁𝐵-dimensional matrix
[𝐸 ⊗ 𝐴]. Based the properties of the Kronecker product [26], the PI
matrix is rewritten as

𝑃 = [𝐺𝐸 ⊗𝐺𝐴][𝐸 ⊗𝐴]𝑇 , (4)

where 𝐺𝑈 = (𝑈𝑇𝑈)−1 with 𝑈 = 𝐸 or 𝐴.
The pseudo-inverse estimator ⌢𝐕𝐵 is the best possible estimator and

unbiased in the presence of Gaussian or Poisson noise. Its precision is
indicated by its covariance matrix [21].

𝛤𝐕𝐵
= 𝑃𝛤𝐕𝐼

𝑃 𝑇 . (5)

A standard scalar performance criterion for polarization calibration is
the sum of the variances of all the elements of the system matrix, which
is the trace of 𝛤𝐕𝐵

[21]:

𝛺 = Tr[𝑃𝛤𝐕𝐼
𝑃 𝑇 ]. (6)

2.2. Gaussian noise

We first assume that the measurements are mainly perturbed by zero-
mean additive white Gaussian noise with variance 𝜎2. The covariance
matrix in Eq. (5) of the estimator should be [21]

𝛤𝐕𝐵
= 𝜎2[𝐺𝐸 ⊗𝐺𝐴], (7)

and the criterion in Eq. (6) is deduced as

𝛺gau = 𝜎2Tr[𝐺𝐸 ]Tr[𝐺𝐴], (8)

where Tr[𝐺𝐸 ] = Tr[𝐸] = 𝑁𝐵 is a constant. Obviously, the total variance
does not depend on the observed system matrix itself. Our aim is to find
optimal RPS matrix 𝐴 for minimizing the performance criterion 𝛺gau,
thus minimizing Tr[𝐺𝐴]. It has been shown that Tr[𝐺𝐴] is minimized if
the last three columns of the RPS matrix 𝐴 form a sphere 2 design on the
Poincaré sphere of unit radius [14–16], that is 𝐴𝑇𝐴 = 𝑁𝐴

12 diag(3, 1, 1, 1)
and 𝐺𝐴 = 4

𝑁𝐴
diag(1, 3, 3, 3). Then the matrix 𝐺𝐸⊗𝐺𝐴 in Eq. (7) is a 4𝑁𝐵

× 4𝑁𝐵-dimensional diagonal matrix, and its coefficients [𝐺𝐸 ⊗𝐺𝐴]𝑖𝑖 are
derived as
{

4∕𝑁𝐴 if 𝑖 = 4𝑚 + 1, and𝑚 = 0, 1,… , 𝑁𝐵 − 1
12∕𝑁𝐴 others. (9)

The corresponding minimal value of the performance criterion is calcu-
lated as

𝛺gau
opt =

40𝑁𝐵
𝑁𝐴

𝜎2. (10)

As seen, the total noise variance decreases with the increase of the
number of the RPSs when the numbers of the analysis states are fixed.
The covariance matrix 𝛤𝐕𝐵

in Eq. (7) is diagonal and its diagonal
elements denote the estimation variances of the elements of the system
matrix 𝐵 as

VAR[𝐵]gauopt =
4
𝑁𝐴

𝜎2

⎡

⎢

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
⋮ ⋮ ⋮ ⋮
1 3 3 3

⎤

⎥

⎥

⎥

⎥

⎦𝑁𝐵×4

. (11)

It is interesting to note that the variance of each element is also
independent of the observed system matrix 𝐵, and its last three columns
achieve noise equalization.

2.3. Poisson noise

Second, we assume that the measurements are mainly degraded by
Poisson shot noise. The diagonal element of the covariance matrix 𝛤𝐕𝐵
in Eq. (5) is derived as [21]

∀𝑖 ∈ [1, 4𝑁𝐵], [𝛤𝐕𝐵
]𝑖𝑖 =

4𝑁𝐵
∑

𝑗=1
𝑄𝑖𝑗 [𝐕𝐵]𝑗 , (12)

where 𝑄 is a 4𝑁𝐵 × 4𝑁𝐵-dimensional matrix expressed as

∀(𝑖, 𝑗) ∈ [1, 4𝑁𝐵], 𝑄𝑖𝑗 =
𝑁𝐴𝑁𝐵
∑

𝑛=1
(𝑃𝑖𝑛)2[𝐸 ⊗𝐴]𝑛𝑗 . (13)

It is easily found that the variances depend on the observed system
matrix 𝐵 in the presence of Poisson noise, which are different from
the case in Eq. (7) in the presence of Gaussian noise. The performance
criterion in Eq. (6) is then given as [21]

𝛺poi =
4𝑁𝐵
∑

𝑖=1
[𝛤𝐕𝐵

]𝑖𝑖 = 𝐕𝑇
(𝐸,𝐴)𝐕𝐵 , (14)

where 𝐕(𝐸,𝐴) is a 4𝑁𝐵-dimensional vector defined as

∀𝑗 ∈ [1, 4𝑁𝐵], [𝐕(𝐸,𝐴)]𝑗 =
4𝑁𝐵
∑

𝑖=1
𝑄𝑖𝑗 . (15)

If the RPSs form a sphere 3 design on the Poincaré sphere [21], one
derives

𝑄𝑖𝑗 =
{

1∕𝑁𝐴 if 𝑖 = 𝑚 ⋅ 4 + 1, and𝑚 = 0, 1,… , 𝑁𝐵 − 1
3∕𝑁𝐴 others. (16)

Then the optimal value of the performance criterion is derived as

𝛺poi
opt =

40𝑁𝐵
𝑁𝐴

𝐼0
4
. (17)
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