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A B S T R A C T

In the study of optical lattices of waveguides, incorporation of nearest neighbour coupling and controllable
nonlinearity can result in many interesting phenomena such as discrete diffraction, Anderson localization,
diffusive transport, self-defocusing, discrete spatial solitons and discrete photonic resonances. The question of
reflecting boundaries at the surfaces has been ignored most often. In the present study, we have shown through
a simple one-dimensional waveguide array that light propagation gets completely modified along the length
if effects from reflecting boundaries are also considered. We have shown only by considering the coupling on
between neighbouring waveguides that there are periodic maximum power centres along the length of the excited
waveguides which can be desirable for placing optical amplifiers in short or long distance communication and
other applications.

1. Introduction

Arrays/Lattices of evanescently coupled, equally spaced waveguides
are ideal structures to observe discretized behaviour of light. And since
they are periodic they possess all the properties of a photonic crystal
lattice structure, i.e., Brillouin Zones, allowed and forbidden bands,
etc. In actual atomic lattices it is not possible to directly observe wave
packet suppression. Only the macroscopic properties like conductance,
backscattering and transmission are used for the purpose. Atomic lat-
tices with precise control over disorder are also extremely difficult to
be synthesized. Therefore, optical lattices of waveguides have become
unique tools to observe and understand various condensed matter
phenomena [1–8]. Many interesting studies, recently, on the optical
waveguide arrays have shown that they possess unique properties
like discrete diffraction [9,10] discrete spatial solitons [11] , Floquet
Bloch solitons [12] , self-defocusing [13], Anderson localization [1]
and discrete photonic resonances [14]. Of these properties, discrete
diffraction is a direct consequence of the freedom to engineer the
diffraction relation provided by the design of these arrays. In the limit of
paraxial approximation in a continuous system, the diffraction relation
is parabolic, i.e., 𝑘𝑧 = 𝛼 − 𝑘2𝑥∕2𝛼, where 𝛼 is a constant related to
diffraction coefficient 𝐷 = −𝜕2𝑘𝑧∕𝜕𝑘2𝑥 for a wave propagating along
the length, z of the waveguide and the cross-section is in the xy plane.
In a continuous system, diffraction coefficient is constant and equal
to 1/𝛼, but in the waveguide arrays the diffraction relation is 𝑘𝑧 =
𝛽 + 2𝐶0 cos(𝑘𝑥𝑏) with 𝛽 being the propagation constant, 𝐶0 the coupling
coefficient, and b, the spacing between the adjacent waveguides [9].
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Novel optical phenomena are a consequence of engineering different
features of this waveguide array or rather to put it simply by exploiting
different parameters of the array for example the Kerr coefficient,
the waveguide coupling constant or the order of the lattice. Self-
defocusing and solitons are a consequence of the Kerr nonlinearity in the
array [13]. Discrete photonic resonances result from built-in patterning
of coupling coefficient between pairs of neighbouring waveguides which
is analogous to built-in bandgap engineering [14]. Anderson localization
which marks the transition from Ballistic to Localized transport regime
in the photonic lattice arises due to introduction of controlled disorder in
the waveguide array. Such a disorder creates phase mismatch in nearby
waveguides and hence they become decoupled.

In this paper, we have studied one-dimensional (1-D) waveguide
lattice having reflecting boundaries on the left and the right sides of
the lattice. Our results show that there occurs redistribution of power
which is a periodic function of distance propagated in the same optically
excited waveguide. The propagation of an input monochromatic plane
wave field has been investigated incorporating the nearest neighbour
coupling and negligible Kerr nonlinearity. The investigations in presence
of Kerr nonlinearity can be easily extended in our methodologies,
however, we focus in the current paper on the results obtained for a
linear system only. The results have been tested using two methods,
i.e., the standard coupled mode theory and beam propagation method.
The highlight of our paper is the observation of periodic coherent
centres of maximum light inside the excited waveguides, either one or
many, which can serve as right places for light amplification in long
waveguides to compensate for the losses.
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Fig. 1. Schematic of the waveguide array considered for the study in this paper.

The photonic lattice under consideration is consisting of cylindrical
waveguides as shown in Fig. 1. A monochromatic plane wave light field
of wavelength 1.55 μm is introduced from the left side illuminating the
entire cross-section of the chosen waveguides uniformly and the light
on the other side is analysed as a function of the waveguide parameters.
Array of 50 cylindrical AlGaAs waveguides have been simulated where
values of the refractive index in the waveguide core and cladding
regions, i.e., Al0.18Ga0.82As and Al0.24Ga0.76 As have been taken as 𝑛 = 3.2
and 3.178, respectively [15,16]. Waveguide core diameter 𝑑 = 2 μm has
been used in our computations, and varying inter-waveguide separation,
b, and length of each waveguide, L are used. We note that the results
discussed in the present paper are quite general in nature and not limited
to above parameters only.

One or more waveguides can be excited at the input end and during
the course of propagation, light evanescently tunnels into adjacent
waveguides. The coupled mode theory [17,18] suggests that such a
system obeys the discrete nonlinear Schrodinger wave equation for the
field in the 𝑛th waveguide, 𝐸𝑛, given by,
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Here, 𝛽𝑛 is the propagation constant of a mode in 𝑛th waveguide,
𝐶0 is the mode coupling coefficient between nearest neighbouring
waveguides, z is the length traversed by the wave inside the waveguide
and 𝛾 represents nonlinear index of refraction that is responsible for
Kerr nonlinearity. One of the most popular methods to model such
structures is the beam propagation method [19,20]. Some of the main
advantages of this method are that it is highly successful for systems
with index discontinuities and that transverse boundary conditions are
easy to apply. Most of the algorithms available under this heading use an
operator approach for moving from one coordinate to another by using
an operator namely the propagator.

2. Methods and techniques

We simulate the beam propagation in the waveguide array by using
two techniques namely the coupled mode theory employing 4th order
Runge–Kutta method and the 2-D beam propagation method [19] in
Matlab. The first technique is a perturbational approach to study the
coupling between two adjacent waveguides. When two waveguides are
in close proximity, they become coupled and exchange power as a
function of propagated length z. It is assumed that the array modes are
weighted mean of individual modes. The mode propagation constants
and coupling coefficients are calculated by employing root finding
and calculation of overlap integral, respectively. The mode coupling
coefficient, 𝐶𝑝𝑞 between waveguides p and q is given by [18],

𝐶𝑝𝑞 =
𝜔𝜀0 ∬ (𝜀𝑟 − 𝜀𝑟,𝑞)⃖⃖⃖⃖⃗𝐸∗
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𝑝 )

(2)

where, 𝜀𝑟, 𝜀𝑟,𝑞 are dielectric functions in the case of both the waveguides
(𝑝 and 𝑞) and with only waveguide 𝑞, respectively. �⃗�𝑝 and �⃗�𝑝 are the

modal electric and magnetic fields for the waveguide p. The propagating
field is calculated using Eq. (1) described above having the coupling
constant 𝐶𝑝𝑞 calculated once and taken to be constant, 𝐶0 for all pairs
of neighbouring waveguides.

The results obtained by using the above technique have also been
cross verified by using another popular technique known as the beam
propagation method and there is no difference at all in the results
obtained from the two techniques. The 2-D beam propagation method
involves numerically solving the Helmholtz equation at all the discrete
points (x,z), and the corresponding equation for the field propagation is
given as

2𝑖𝛽 𝜕𝐸
𝜕𝑧

= 𝜕2𝐸
𝜕𝑥2

+ (𝑛2𝑘20 − 𝛽2)𝐸 (3)

Here, 𝑛 is the complex index of refraction with its imaginary part
negligible in the dielectrics away from resonances, 𝑘0 = 2𝜋∕𝜆 is
free space wave propagation constant at wavelength 𝜆and 𝛽 is the
propagation constant as defined earlier. We use the Crank–Nicolson
Scheme [19] to model the above equation and calculate the electric field
amplitude at all discrete points as it propagates inside the waveguide.

Since the waveguides are cylindrical, we neglect the polarization
dependence of the modes. The effect of coupling is also unaltered
because all the waveguides have the same state of polarization. It is
noted that both the above techniques are valid for isotropic media. The
normalization condition for the field at all the discrete points, given by
𝑛
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has been taken into account appropriately to ensure that the total power
is conserved at all values of z along the wave propagation direction in
the waveguides. Here, index i runs over all the discrete points n at the
input side along 𝑥-direction where at only on the waveguides, the field
is E0 and at rest it is zero. Similarly, index k runs over all the discretized
points along z for all i’s including the input and exit ends. The total
number of discrete points N depends on the waveguide length and the
resolution taken in the simulations. For example, waveguide of length
45 mm contains 45000 discrete points along the propagation direction
z. In our simulations we have assumed that the nonlinear response of the
medium is instantaneous and the waveguides are lossless. The value of 𝛾
(Kerr coefficient) was calculated using the relation [11], 𝛾 = 𝜔0𝑛2

𝑐𝐴𝑒𝑓𝑓
. Here,

nonlinear index 𝑛2 is 1.6 × 10−13cm2/W and 𝐴𝑒𝑓𝑓 is the effective area of
the mode. We only excited the fundamental (Gaussian) modes in the
waveguide array. The approach in the above is quite general and effects
for both the linear and nonlinear interactions can be computed and
analysed in the same manner. Our results in the current paper have been
presented and analysed for without the contribution from the nonlinear
term (𝛾 = 0) in Eq. (1). The results with strong Kerr nonlinearity are
under study and will be discussed in future.

In addition to the above considerations in the two methodologies,
we have considered perfect reflecting boundaries at both the ends,
i.e., before the first waveguide and after the last waveguide along
x-dimension in Fig. 1. Practically this can be achieved by coating
the boundaries with highly reflecting materials at the experimental
wavelength. By imposing these reflecting boundary conditions in the
above two techniques, we have obtained interesting results as discussed
below in the next section. Such conditions in the waveguide arrays
for one or more waveguides excited at the input with plane wave
fields have not been considered hitherto, to the best of our knowledge.
However, in some other context and applications, reflective boundary
systems have been reported in many studies in the literature most of
which are centred around the theme of Anderson localization near
the boundary [21–24], surface states [25,26], backscattering [27] and
quantum walks of photons [28]. The approach in the current paper is
somewhat similar to the use of reflecting boundaries in a Fabry–Perot
etalon or modern seismic interferometry where part of transducer array
surface is substituted by reflective boundaries [29]. From our results
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