
Optics Communications 417 (2018) 30–36

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Optical image security using Stokes polarimetry of spatially variant
polarized beam
Areeba Fatima, Naveen K. Nishchal *
Department of Physics, Indian Institute of Technology Patna, Bihta, Patna-801 106, Bihar, India

a r t i c l e i n f o

Keywords:
Optical security and encryption
Phase retrieval
Polarization
Fourier optics and signal processing

a b s t r a c t

We propose a novel security scheme that uses vector beam characterized by the spatially variant polarization
distribution. A vector beam is so generated that its helical components carry tailored phases corresponding to
the image/images that is/are to be encrypted. The tailoring of phase has been done by employing the modified
Gerchberg–Saxton algorithm for phase retrieval. Stokes parameters for the final vector beam is evaluated and is
used to construct the ciphertext and one of the keys. The advantage of the proposed scheme is that it generates
real ciphertext and keys which are easier to transmit and store than complex quantities. Moreover, the known
plaintext attack is not applicable to this system. As a proof-of-concept, simulation results have been presented
for securing single and double gray-scale images.

1. Introduction

Study of optical methods to secure information has found widespread
interest among the researchers. The double random phase encoding
(DRPE) scheme gave a convenient method to optically encrypt in-
formation to stationary white noise [1]. Since then, various other
features of light have been explored for establishing a robust optical
cryptosystem. Optical transformations such as the Fourier transform,
gyrator transform, Fresnel transform, fractional Fourier transform etc.
were used as tools to perform the encryption and decryption [2–4]. As
vulnerabilities of the DRPE system to various attacks were established
due to its inherent linearity [5–7], newer optical cryptosystems were
introduced which were asymmetric systems. These asymmetric systems
included phase truncation based Fourier transform (PTFT) techniques
or the equal modulus decomposition techniques (EMD) [8–15]. Though
these asymmetric cryptosystems provided resistance against the known-
plaintext attack, yet it was soon found that they were vulnerable to the
specific attack [16,17]. Hence, it is always an effort to find various
schemes that gives a strong optical cryptosystem. Moreover, various
studies have been reported that propose double image or multiple image
encryption [18–22]. Apart from robustness, the research trends also
show studies that try to find newer aspects of light that could be used in
encoding information. In this regard, polarization is another aspect of
light that has been extensively used to construct efficient cryptosystems
and authentication schemes [23–28]. Studies using the Stokes formalism
to encrypt information have been widely reported as it uses the intensity
information and, therefore, it is easier to implement [23].
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As compared to the mainstream polarization techniques, the use
of spatially variant polarization (or vector beams) is a lesser studied
tool for optical encryption [29–31]. A geometrical phase generated by
space variant polarization condition due to a subwavelength grating has
been employed to encrypt information [29]. In another work, Maluenda
et al. developed a polarimetric measurement based encryption and
verification scheme that used non uniform state of polarization (SOP)
distribution [31]. The encryption setup was based on the Mach–Zehnder
interferometer and it processed the transverse components of the beams
in the two arms of the interferometer.

In general, vector beams are characterized by spatially varying SOP
across the optical beam cross-section [32]. This property of vector beams
has led to new features that enhance the range of performances of optical
systems. For example, the vector beams can give tight focal spots which
in turn have enabled high resolution imaging, optical trapping and plas-
monic focusing. Vector beams have found applications in various other
fields like atmospheric sensing and singular optics, to name a few [32].
Several methods have been proposed to generate different vector beams
with non-uniform polarization. These methods involve interferometric
arrangement or optical set-ups using liquid crystal displays [33–35].
In one of the works, a Mach–Zehnder interferometer set up was used
to generate optical beam with non-uniform state of polarization [33].
Recently, a method to generate vector beams with tailored phase and
polarization has been proposed [34,36]. The incident beam which would
give the desired phase and polarization was determined using iterative
Gerchberg–Saxton (GS) algorithm [37].
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Fig. 1. Flowchart for modified GS Algorithm used to evaluate phase-only
functions.

Refs. [29–31] show that space variant polarization distribution can
be a source of encryption keys. In this work, we propose single and dou-
ble optical image encryption scheme based on vector beams which have
non-uniform arbitrary polarization distribution. The proposed scheme
utilizes such a vector beam generator reported by Chen et al. [34].
Our motive is to study an optical system that generates vector beams
carrying the encoded phase corresponding to the plaintexts. The phase
of the vector beam carries the information of the plaintexts. Finally,
the Stokes vector formalism for polarized light is used to generate the
ciphertext and one of the keys. The encryption can be done optically,
while the decryption can be done numerically.

The paper is organized as follows: in Section 2, we describe the
encryption scheme for single image, elaborating the encryption as well
as the decryption principle. In Section 3, the scheme is extended for
double image encryption. The proposed method is validated by nu-
merical simulations. Section 4 provides cryptanalysis of the encryption
technique.

2. Optical security scheme for single image

2.1. Encryption principle

In this section, we discuss the principle of the proposed scheme for
securing a gray-scale image. The scheme is based on obtaining a vector
beam that can carry the plaintext information in its phase. The entire
scheme consists of three major steps: (1) generation of two phase-only
functions corresponding to the plaintext, (2) generation of vector beam
carrying phase-only functions of step 1 as its phase, and (3) recording
of Stokes parameters of the vector beam. These steps are described in
detail in the following sub-sections.

2.1.1. Generation of phase-only functions
The first step involves the numerical evaluation of two different

phase-only functions, namely, exp(𝑖𝜙1) and exp(𝑖𝜙2) corresponding to
the plaintext. Phase-only functions corresponding to an intensity image
𝐼(𝑥, 𝑦) are complex quantities with amplitude as unity. When subjected
to the inverse Fourier transform, they yield complex functions which
have original intensity image 𝐼(𝑥, 𝑦) as their amplitude. To generate
such functions, the iterative numerical method of modified GS algorithm
(MGSA) [37] is used. Fig. 1 shows the flowchart depicting this iterative
phase retrieval method. The steps shown in flowchart are discussed
below. Here, 𝑘 represents the iteration number.

Step 1: Two different random distribution functions 𝛿1(𝑥, 𝑦) and 𝛿2(𝑥, 𝑦),
both lying in the interval [0, 2𝜋] are used to construct two different
phases, exp[𝑖𝛿1(𝑥, 𝑦)] and exp[𝑖𝛿2(𝑥, 𝑦)], to initiate the iterative process
(i.e. for the case 𝑘 = 0). These phases are multiplied with the amplitude

of the plaintext function
√

𝐼(𝑥, 𝑦). For the 𝑘th iteration it can be written
as

𝐸1𝑘(𝑥, 𝑦) =
√

𝐼(𝑥, 𝑦) exp[𝑖𝛿1𝑘(𝑥, 𝑦)] (1)

𝐸2𝑘(𝑥, 𝑦) =
√

𝐼(𝑥, 𝑦) exp[𝑖𝛿2𝑘(𝑥, 𝑦)]. (2)

Step 2: The above two quantities, Eqs. (1)–(2) are Fourier transformed.

𝐹1𝑘(𝑢, 𝑣) = ∬ 𝐸1𝑘(𝑥, 𝑦) exp[−𝑖2𝜋(𝑢𝑥 + 𝑣𝑦)]𝑑𝑥𝑑𝑦

= |

|

𝐹1𝑘(𝑢, 𝑣)|| exp[𝑖𝜙1𝑘(𝑢, 𝑣)] (3)

𝐹2𝑘(𝑢, 𝑣) = ∬ 𝐸2𝑘(𝑥, 𝑦) exp[−𝑖2𝜋(𝑢𝑥 + 𝑣𝑦)]𝑑𝑥𝑑𝑦

= |

|

𝐹2𝑘(𝑢, 𝑣)|| exp[𝑖𝜙2𝑘(𝑢, 𝑣)]. (4)

Step 3: Our objective is to obtain phase-only functions in the focal
domain. Hence, the amplitudes of the quantities obtained in Eqs. (3)–(4)
are replaced with unity:

𝐹 ′
1𝑘(𝑢, 𝑣) = exp[𝑖𝜙1𝑘(𝑢, 𝑣)] (5)

𝐹 ′
2𝑘(𝑢, 𝑣) = exp[𝑖𝜙2𝑘(𝑢, 𝑣)]. (6)

Step 4: The above quantities are inverse Fourier transformed (IFT).

𝐸′
1𝑘(𝑥, 𝑦) = 𝐼𝐹𝑇

{

𝐹 ′
1𝑘(𝑢, 𝑣)

}

(7)

𝐸′
2𝑘(𝑥, 𝑦) = 𝐼𝐹𝑇

{

𝐹 ′
2𝑘(𝑢, 𝑣)

}

. (8)

The phase of the obtained quantity is retained while the amplitude is
substituted with the input image amplitude

√

𝐼(𝑥, 𝑦), to evaluate the
next iteration values:

(𝛿1)𝑘+1 = 𝑝ℎ𝑎𝑠𝑒
(

𝐸′
1𝑘
)

(9a)

(𝛿2)𝑘+1 = 𝑝ℎ𝑎𝑠𝑒
(

𝐸′
2𝑘
)

(9b)

[𝐸1𝑘(𝑥, 𝑦)]𝑘+1 =
√

𝐼(𝑥, 𝑦) exp[𝑖(𝛿1(𝑥, 𝑦))𝑘+1] (10)

[𝐸2𝑘(𝑥, 𝑦)]𝑘+1 =
√

𝐼(𝑥, 𝑦) exp[𝑖(𝛿2(𝑥, 𝑦))𝑘+1]. (11)

The iterations continue till the mean square error (MSE) between

the absolute values of 𝐸1(𝑥, 𝑦) of two consecutive iterations reach a
predefined minima. This process is repeated for the absolute values
of 𝐸2(𝑥, 𝑦). At the end of the iterative process, we obtain phase-only
functions, exp(𝑖𝜙1) and exp(𝑖𝜙2) which, though different valued, give the
same input image intensity on being inverse Fourier transformed.

2.1.2. Generation of vector beam carrying phase-only functions as its phase
The aim of this second step is to generate a spatially variant

polarization distribution beam which would carry the evaluated phase-
only function exp(𝑖𝜙1) and exp(𝑖𝜙2) as its phase. This can be achieved
by using a vector beam generator based on the use of two-dimensional
(2D) holographic grating (HG) displayed on a spatial light modulator
(SLM) [34]. Holograms prove to be a convenient means to incorporate
a spatially dependent phase distribution. In this regard, a 2D HG can be
understood as a combination of two one-dimensional gratings, aligned
along the 𝑥- and the 𝑦-axes, respectively, each with their own phase
distributions [38]. In the proposed scheme, these additional phase
distributions of the HG is defined by 𝜙1 and 𝜙2 obtained from phase-only
functions, exp(𝑖𝜙1) and exp(𝑖𝜙2) explained in Section 2.1.1. In this case
then, the amplitude transmittance 𝑡(𝑥, 𝑦) of a 2D sinusoidal amplitude
grating can be given as [34]:

𝑡(𝑥, 𝑦) = 0.5 + 𝑚
[

cos(2𝜋𝑓0𝑥 + 𝜙1(𝑥, 𝑦)) + cos(2𝜋𝑓0𝑦 + 𝜙2(𝑥, 𝑦))
]

∕4. (12)
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