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a b s t r a c t

A new class of pulse source with correlation being modeled by the convolution operation of two legitimate
temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modu-
lated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media
are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat
profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width
of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of
the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for
pulse shaping and pulsed laser material processing.

1. Introduction

It is well known in statistic optics that the far field spectral density
is proportional to the spatial Fourier transform of the source degree
of coherence, one of the famous reciprocity relations known to be
of Fourier-type law [1]. According to the law, various new model
sources with nonconventional correlation function have been developed
in the spatial domain. Many extraordinary properties are induced by
the special correlation form in the far fields, Such as self-focusing and
lateral self-shifting of the intensity maxima of the beam with non-
uniformly correlation function [2,3], self-splitting of the beam with
Hermite–Gaussian correlated function or cosine Gaussian correlation
with rectangular symmetry [4,5], and self-shaping of the beam with
multi-Gaussian Schell-model correlation function or sinc-Schell corre-
lation [6,7]. These unique features of the special correlated partially
coherent beams indicate that such beams carry potential for practical
application involving lasing detection, optical shaping, and atmosphere
optical communications. In addition, apart from the classic weighted
summation of the coherent modes, more general linear combinations
including difference, products and powers of two degrees of coherence
have been shown to lead to novel random sources and fields radiated
by them [8–11]. Recently, convolution of two degrees of coherence is
confirmed to represent a novel legitimate degree of coherence [12]. And
convolution operation being a new method for intensity modulation of
the produced far fields is illustrated [13].
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The studies of the influence of coherence properties on the beams
upon propagation has not only been confined to statistically stationary
light source, but also been extended for the stochastic optical pulses
representing a wide class of partially coherent non-stationary fields [14–
24]. The basic model characterizing partially coherent light pulses in
temporal domain is the Gaussian Schell-model pulse, of which the evolu-
tion of the pulse width on propagation in dispersive medium greatly de-
pends on the width of the temporal degree of coherence [14,15]. Apart
from the classic model, some new partially coherent pulsed models
with non-Gaussian Schell-model temporal correlations are introduced,
which are shown to lead to novel intensity profiles on propagation in
dispersive media. Pulses with non-uniform correlation distribution are
shown to produce a self-focusing and temporal shift of the intensity
maximum [19], Pulses with sinc Schell-model temporal correlation
and Multi-Gaussian Schell-model temporal correlation acquire flat in-
tensity profiles with controllable duration and edge sharpness [20].
Moreover, it is shown that a linear superposition of several Multi-
Gaussian-correlated pulse ensembles can realize the pulse-position mod-
ulation [21]. The method for generating partially coherent light pulses
experimentally has been demonstrated in [24].

In this paper, we will show that in the temporal domain convolution
of the degrees of coherence can be used for modulation of pulse average
intensity and degrees of coherence. The source model for the source
temporal degree of coherence being convolution of Gaussian Schell-
model temporal correlation function and MSSM temporal correlation
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function are introduced. How the unique correlation properties affect
the propagation characteristics of the pulse ensembles generated by
pulse source in dispersive media are analyzed in detail.

2. Source model

The mutual coherence function characterizing the second-order
temporal correlation properties of the ensemble of random, statistically
stationary pulses is given by [1]
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where 𝐼0 (𝑡) is the average intensity of the partially coherence pulse at
time 𝑡, 𝛾0

(
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)

denotes the degree of coherence of the pulse.
As has been shown for the correlation functions in the spatial

domain, the sufficient condition for the temporal correlation function
to be physically realizable is that it can be represented in the form
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where 𝐻(𝑡, 𝜐) is an arbitrary kernel and the weighting function 𝑝(𝜐) is
a non-negative, Fourier-transformable function. For Schell-Model (SM)
pulsed beams, 𝐻0 takes on the form:

𝐻0(𝑡, 𝜐) = exp
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here 𝜎𝑡0 represents the r.m.s width of the pulse ensemble. Inserting
Eq. (3) into Eq. (2), we readily get
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Comparing Eqs. (1) and (4), we can see that 𝛾0
(

𝑡1, 𝑡2
)

is the Fourier
transform of 𝑝 (𝜐).

Let us consider that a novel legitimate degree of coherence of the
pulse is represented by convolution of two degrees of coherence 𝛾1 and
𝛾2, i.e. [12].
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where the symbol ⊗ denotes the convolution operation and 𝐴𝑡 is a
normalization factor. It is known that the Fourier transform of the
convolution of two functions is a product of their Fourier transforms,
we get

𝑝 (𝑣) = 𝑝1 (𝑣) 𝑝2 (𝑣) , (6)

where 𝑝1 (𝑣) and 𝑝2 (𝑣) are the Fourier transforms of 𝛾1 and 𝛾2, respec-
tively.

Now, we illustrate the theory by employing the Gaussian Schell-
model temporal correlation [1] and MSSM temporal correlation func-
tion [25] for 𝛾1 and 𝛾2,
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with normalization factor 𝐵 =
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(2𝑁 − 1) ∕ [2𝑚 (2𝑁 − 2𝑛 + 1)] 𝑚 being an arbitrary positive real num-
ber, where 𝑇𝑔 is the classic Gaussian temporal correlation and 𝑇𝑠
represents the sinc Schell-model temporal correlation, which determine
the degree of coherence of the pulse ensemble. Then, the temporal
degree of coherence of pulse source 𝛾𝑐 , i.e. the convolution of the two
degree of coherence 𝛾1 and 𝛾2 can be expressed as
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which is similar to the form of the complex input field of a uniform pulse
in [25], here 𝛾𝑔
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is supposed to be the temporal
envelope of the degree of coherence of the pulse source.

Fig. 1 illustrates the variation of the degree of coherence 𝛾𝑔 , 𝛾𝑠 and
their convolution 𝛾𝑐 on the time tag 𝑡2 − 𝑡1 for different values of
order 𝑁 when 𝑇𝑠 = 0.1 ps and 𝑇𝑔 = 0.04 ps, respectively. Fig. 1(a-
2) and (b-2) show that the temporal degree of coherence 𝛾𝑠 of multi-
sinc Schell-model pulse exhibit oscillations, which is similar to the sinc
Schell-model pulsed source of the second kind [22]. As a result of
the convolution operation defined by Eq. (9), the oscillations of the
temporal degree of coherence weaken as in Fig. 1(a-3) and (b-3), which
implies that such form of the degree of coherence in the source field can
realize the modulation of pulse propagation in second-order dispersive
medium.

3. Propagation of the modulated pulse

Propagation of the mutual coherence function of the pulse source in
second-order dispersive medium can be characterized by the generalized
Collins formula in the temporal domain [15]
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where 𝛽2 represents the group velocity dispersion coefficient.
Inserting Eq. (4) into Eq. (10) and interchanging the orders of

integrals, we can obtain the expression
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On substituting from Eq. (3) into Eq. (12), the following analytic formula
can be obtained
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where 𝛥2 (𝑧) = 𝜎2𝑡0 + 𝛽22𝑧
2∕𝜎2𝑡0.

By taking the Fourier transform of Eqs. (7) and (8) and using Eq. (6),
we get
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According to Eq. (13) the average intensity of pulse ensemble can be
determined at the coinciding time instants:
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From Eq. (15), we can see that 𝑝 (𝑣) determines the profile of the
intensity of pulse ensemble on propagation in second-order dispersive
medium. When 𝑝 (𝑣) is given by the Fourier transform of Eq. (8)
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