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a b s t r a c t

We investigate the propagation characteristics and stabilization of generalized-Gaussian pulse in highly nonlinear
homogeneous media with higher-order dispersion terms. The optical pulse propagation has been modeled by the
higher-order (3+1)-dimensional cubic–quintic–septic complex Ginzburg–Landau [(3+1)D CQS-CGL] equation.
We have used the variational method to find a set of differential equations characterizing the variation of the
pulse parameters in fiber optic-links. The variational equations we obtained have been integrated numerically
by the means of the fourth-order Runge–Kutta (RK4) method, which also allows us to investigate the evolution
of the generalized-Gaussian beam and the pulse evolution along an optical doped fiber. Then, we have solved
the original nonlinear (3+1)D CQS-CGL equation with the split-step Fourier method (SSFM), and compare the
results with those obtained, using the variational approach. A good agreement between analytical and numerical
methods is observed. The evolution of the generalized-Gaussian beam has shown oscillatory propagation, and
bell-shaped dissipative optical bullets have been obtained under certain parameter values in both anomalous and
normal chromatic dispersion regimes. Using the natural control parameter of the solution as it evolves, named
the total energy 𝑄, our numerical simulations reveal the existence of 3D stable vortex dissipative light bullets,
3D stable spatiotemporal optical soliton, stationary and pulsating optical bullets, depending on the used initial
input condition (symmetric or elliptic).

1. Introduction

The dynamics of solitons propagating in dispersive nonlinear media
has been a major area of intense research activities, given its potential
applicability in all optical communication systems. The soliton was first
described by John Scott Russell [1] in 1834, who observed a solitary
wave in the Union Canal, reproduced the phenomenon in a wave tank,
and named it the ‘‘Wave of Translation’’. Several people contributed
to the effort of trying to understand the phenomenon, including Airy
[2], Boussinesq [3] and Korteweg and de Vries (KdV) [4], who in 1895
mathematically described weakly nonlinear shallow water waves with
an equation that later came to be known as the KdV equation.

Since then, similar equations have been found in a wide range of
physical phenomena, especially those exhibiting shock waves, traveling
waves and solitons. In 1965, Zabusky and Kruskal [5] used a finite
difference approach to numerically solve the KdV equation and the word
‘‘soliton’’ was first used. The soliton is a special subset of solitary waves
that is stable to perturbations and mutual collisions.
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In nonlinear optics, solitons can be classified as temporal [1-
dimension (1D)] [6], spatial [1 and 2-dimensions (1D and 2D)] [7–9]
or spatiotemporal [3-dimensions (3D)] [10] depending on whether
the light is confined in time, space, or space and time, respectively.
Propagation of optical pulses in monomode optical fibers is mainly
influenced by the group velocity dispersion and the refractive index
nonlinearity. Rapid progress in ultrashort time laser technology has
made it possible that, optical pulses with durations comparable to the
carrier oscillation cycle can be generated. The propagation of such
ultrashort and intense pulses is then affected by additional physical
mechanisms like self-steepening, Raman term and septic nonlineari-
ties [11,12], where especially higher-order effects as fourth and sixth-
order dispersion terms become important [13–17]. Temporal solitons in
single mode optical fibers are the prototypical optical solitons. These
were predicted theoretically in 1973 by Hasegawa and Tappert [18],
and first observed experimentally in 1980 by Mollenauer et al. [19].
Extensive research since then has led to the current development of
telecommunication systems based on solitons [20]. Compared to the
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work on temporal solitons, progress in the area of multidimensional
(spatial or spatiotemporal) optical solitons has been much slower. It
has long been understood that self-focussing as a result of the Kerr
nonlinearity could compensate for the spreading of a beam due to
diffraction, but the resulting balance is unstable in dimensions greater
than one [21], where the beam tends to diffract, collapse, or disintegrate
into multiple filaments. Spatial solitons were first produced in liquid
𝐶𝑆2 [22,23], where an interference grating was employed to stabilize
the solitons, and light filaments were observed [24] in resonant propa-
gation through an atomic vapor, where the nonlinearity is saturable. 1D
spatial solitons of the Nonlinear Schrödinger equation were generated
in a glass waveguide in 1990 [25].

One of the major goals in the field of soliton physics is the production
of light fields that are localized in all three dimensions of space as well
as time, which we will refer to as 3D spatiotemporal solitons (STS) or
light bullets. This results from the simultaneous balance of diffraction
and group velocity dispersion (GVD) by self-focussing and nonlinear
phase-modulation, respectively. In order to transmit ultrashort optical
solitons at high bit rate in the picosecond and femtosecond regimes,
several new effects such as sixth-order dispersion term, self-steepening
(Kerr dispersion), gain, loss, spectral filtering, self-frequency shift (SFS)
arising from stimulated Raman scattering and cubic, quintic, septic non-
linearities of dispersive and dissipative type are needed to be taken into
account. Dissipative optical bullets, as a form preserving self-confined
dissipative structures, have been described by the multidimensional
standard complex cubic–quintic complex Ginzburg–Landau equations
(CQGLE) [26,27]. Along the same line, Liu et al. [28] have investigated
numerically the impact of phase on the collisions between solitary
vortices in the frame of CQGLE. In fact, by gradually increasing initial
kick, three generic outcomes have been identified: Merger of the two
solitons into one, at small initial kick; Creation of an extra soliton,
at intermediate initial kick; Quasi-elastic interactions at larger initial
kick [28].

In general, equations describing soliton processes are usually ob-
tained by certain approximating procedures affecting nonlinearity and
dispersion. For example, picosecond pulses are well described by the
NLS equation which account for second-order dispersion and self-phase
modulation (SPM). However, it is known that the NLS equation does
not give correct prediction for pulse width smaller than one picosecond.
Thus, in extensive studies of ultrafast processes, the classical approxi-
mations often appear to be insufficient and higher-order effects become
of importance. A typical example is high speed systems like nonlinear
transmission lines in the femtosecond regime for soliton communica-
tions. To enlarge the information capacity, in ultrashort optical solitons
at high bit rate in the picosecond and femtosecond regimes, we have
taken into account that the presence of higher-order nonlinearities 𝜒 (5),
𝜒 (7), recently reported in chalcogenide glasses also suggests that ma-
terials appropriate to applications requiring higher-order nonlinearities
exist. The nonlinear propagation of ultrashort pulses in a doped optical
fiber is investigated with several new effects that we have taken into
account such as the sixth-order dispersion term, self-steepening (Kerr
dispersion), self-frequency shift (SFS) arising from stimulated Raman
scattering and cubic, quintic, septic nonlinearities of dispersive and
dissipative types which greatly influence their propagation properties.
In cartesian coordinates, the governing equation that have been derived
in the paraxial wave approximation and which describe light bullets,
is based on the following higher-order (3+1)D cubic–quintic–septic
complex Ginzburg–Landau (CQS-CGL) equation [29]
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The right-hand side 𝑄 of Eq. (1) contains dissipative terms:

𝑄 = 𝑖𝛾𝑟𝜓 − 𝑖𝑞𝑖|𝜓|
2𝜓 − 𝑖𝑐𝑖|𝜓|
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+ 𝑖𝑑5𝑟𝜓𝜏𝜏𝜏𝜏𝜏 + 𝑖𝑑6𝑟𝜓𝜏𝜏𝜏𝜏𝜏𝜏 + 𝑖𝑚𝑟(|𝜓|
2𝜓)𝜏 ,

(2)

where the subscripts 𝜏 and 𝑧 indicate the partial derivatives of 𝜓 with
respect to 𝜏 and 𝑧, respectively. The optical envelope 𝜓(𝑥, 𝑦, 𝜏, 𝑧) is a
normalized complex function of four real variables 𝑥, 𝑦, 𝜏, 𝑧, where 𝑥 and
𝑦 are the two transverse coordinates and 𝑧 is the propagation distance. In
studying the light bullets propagation, it is often convenient to measure
time in the moving frame of the pulse optical envelope through the
following transformation 𝜏 = 𝑡 − 𝛽𝑒𝑓𝑓1𝑧, that is, moving along with
the pulse optical envelope 𝜓(𝑥, 𝑦, 𝑡, 𝑧), at the group velocity 𝑣𝑔 = 1

𝛽𝑒𝑓𝑓1
,

where 𝑡 is the retarded time in the frame moving with the pulse.
In Eqs. (1) and (2), the parameters 𝑝𝑟, 𝑝𝑖, 𝑞𝑟, 𝑞𝑖, 𝑐𝑟, 𝑐𝑖, 𝑠𝑟, 𝑠𝑖, 𝛾𝑟, 𝛾𝑖,

𝑚𝑟, 𝑚𝑖, 𝑛𝑟, 𝑛𝑖, 𝑑3𝑟, 𝑑3𝑖, 𝑑4𝑟, 𝑑4𝑖, 𝑑5𝑟, 𝑑5𝑖, 𝑑6𝑟 and 𝑑6𝑖 are real constants,
where 𝑝𝑟 measures the wave dispersion, 𝑝𝑖 the spectral filtering, 𝑞𝑟 and
𝑞𝑖 represent the Kerr nonlinearity coefficient and the nonlinear gain–
absorption coefficient (if positive), respectively. The terms 𝑐𝑟 and 𝑐𝑖
stand for the saturation coefficient of the Kerr nonlinearity (if nega-
tive) and the saturation of the nonlinear-gain–absorption (if negative),
respectively, while 𝑠𝑟 and 𝑠𝑖 represent the higher-order correction terms
to the nonlinear refractive index and the nonlinear-gain–absorption,
respectively. 𝛾𝑟 and 𝛾𝑖 stand for the coefficient for linear gain (if positive)
and frequency shift, respectively. The quantities 𝑑3, 𝑑4, 𝑑5, 𝑑6 account
for the third-order dispersion, fourth-order dispersion, fifth-order dis-
persion and sixth-order dispersion coefficients, respectively. 𝑚𝑟 which
is the nonlinear dispersion term, is responsible for self-steepening at the
pulse edge. 𝑚𝑖 describes the combined effect of nonlinear gain and/or
absorption processes and is usually neglected in optical transmission
system. 𝑛𝑖 is responsible for the soliton self-frequency shift and 𝑛𝑟 is also
usually neglected in optical transmission system.

The paper is organized as follows. Section 2 is devoted to the
presentation of the set of variational equations resulting from the
Euler–Lagrange equations. In Section 3, we present a fully numerical
simulation of the higher-order (3+1)D CQS-CGL equation which finally
tests the variational approach. A good agreement between analytical
and numerical methods is observed. Section 4 gives some concluding
remarks.

2. Analytical treatment using variational approach

The obtained (3+1)D CQS-CGL equation, since it is not integrable,
can be solved only numerically. However, some analytical approach
is generally used. To analyze the solution’s characteristics, we now
consider a bell-type ansatz with a few free parameters which depend
on the propagation distance 𝑧 such as the amplitude, the temporal and
spatial pulse widths, the position of the pulse maximum, the unequal
wavefront curvatures, the chirp parameters, and the phase shift. In the
following, we first use the variational method [30–32] for dissipative
systems to obtain physical insight in terms of a few relevant parame-
ters and then present numerical simulations that confirm the analytic
predictions qualitatively. Very recently, variational approach has been
used by Tang et al. [33] to predict that the Gaussian wave packet, in a
helicoidal lattice model, performs anharmonic Bloch oscillations, which
includes the fundamental harmonic and the high-order harmonics. Since
the success of the above mentioned method lies in proper choice of trial
function, we have chosen the generalized-Gaussian trial ansatz [31–34]

𝜓(𝑥, 𝑦, 𝜏, 𝑧) = 𝐴(𝑧)exp(− 𝜏2

2𝑇 2(𝑧)
− 𝜏4

2𝑇 4(𝑧)
− 𝑥2

2𝑋2(𝑧)
− 𝑥4

2𝑋4(𝑧)

−
𝑦2

2𝑌 2(𝑧)
−

𝑦4

2𝑌 4(𝑧)
+ 𝑖𝜃(𝑧)𝜏2 + 𝑖𝐶(𝑧)𝑥2 + 𝑖𝜎(𝑧)𝑦2 + 𝑖𝜙(𝑧)). (3)

The pulse evolution is described through the variation of the ampli-
tude𝐴(𝑧), temporal 𝑇 (𝑧) and spatial𝑋(𝑧) and 𝑌 (𝑧) pulse widths, unequal
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