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a b s t r a c t

We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This
identification method based on Levenberg–Marquardt method conducts with a little prior information and no
auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This
identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive
optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this
tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay
mode by simulation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive optics (AO) is a real-time correction system for wave-
front distortions. AO systems are widely used in astronomical telescopes
to compensate the atmospheric perturbation [1,2] and laser systems
for high beam qualities [3–5]. The tip-tilt disturbances, which are the
main components of wave-front distortions [6], are very detrimental
to the performance of AO systems. As the complexity of AO systems is
increasing, tip-tilt disturbances originate not only from atmospheric per-
turbation, but also from vibrations caused by system components such
as cryo-coolers, pumps, fans and motors [7–10]. For instance, a 25%
loss of Strehl Ratio (SR) could be attributed to vibrations on NAOS [8]
while a 20 mas RMS jitter due to vibrations was estimated on Altair [10].
In order to achieve high image qualities or high beam qualities, tip-tilt
disturbances affected by vibrations must be well corrected.

Linear Quadratic Gaussian (LQG) is an appealing control strategy
for AO systems to mitigate tip-tilt disturbances affected by vibra-
tions [11,12]. LQG control is an optimal correction law with respect
to minimum residual phase variance, which performs an optimal state
estimation thanks to a Kalman filter. Since the first time that Paschall
and Anderson [13], and then B. Le Roux et al. [14,15] introduced
Kalman filter in MultiConjugate Adaptive Optics (MCAO), there is a
growing attention paid to LQG control based on Kalman filter. And
LQG control strategy has been adapted in several modern AO systems
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with a significant gain on tip-tilt disturbances correction. The first
laboratory validation of vibration filtering with LQG control for adaptive
optics was carried out in 2008 [16], where the artificial vibration
was almost suppressed. In 2012, the first on-sky single conjugated AO
(SCAO) validation of full LQG control on the CANARY pathfinder was
conducted [17], where about 10% to 20% increase of SR was achieved
by vibration mitigation. The effectiveness of the tip-tilt disturbances cor-
rection with LQG control was also found in Gemini Planet Imager [18].

LQG control achieves optimal tip-tilt disturbance correction when
provided with precise tip-tilt disturbance model [19]. It is essential to
identify exactly tip-tilt disturbance model from the wave-front sensor
(WFS) measurements. But tip-tilt disturbances caused by vibrations are
difficult to be characterized, because they vary from one system to
another as well as evolve in time along observation. The online identifi-
cation method may be a good choice. Nowadays, time domain methods
such as prediction error method (PEM), sub-space identification (SSI)
and extended Kalman filter (EKF) are introduced to identify model
parameters for LQG control [20,21]. Although, the non-convexity of
the criterion of PEM makes it not easy to optimize due to several local
minima. For the SSI, it is not proper to identify model for obtaining the
meaningful physical model parameters. Besides, based on the physical
model structure of vibrations, the EKF is sensitive to the initialization
values, leading to poor performance or instability of the closed loop. In
frequency domain, an online model parameters identification method
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has been proposed [22]. This method uses maximum likelihood method
to identify model parameters, and 80%–90% energy of the vibrations
is mitigated by LQG control. However, the minimum and maximum
frequencies between which the vibration peaks exist need to be carefully
chosen beforehand according to each AO system.

In this paper, we propose a method to identify vibration model
parameters based on the spectrum of measurement data for LQG
control. It is an online model parameters identification method which
fits the disturbance spectrum with the Levenberg–Marquardt method.
The Levenberg–Marquardt method is an iterative method with low
computational budget. Also, the isolation procedure proposed here can
pick vibration peaks accurately. Besides the information about the
noise frequency and the model structure of vibrations, it runs success-
fully on experimental data without any other prior information about
disturbances. This identification method makes it easy that vibration
mitigation achieves with LQG control, where about 90% energy of the
vibrations is mitigated. The analysis of the on-line identification and the
robustness is also presented below in this paper.

We organize the paper as follows. In Section 2, we briefly provide
the state–space description of AO system and the formalism of LQG
control. In Section 3, our model identification method is presented.
Then in Section 4, we present the results of the tip-tilt disturbances
identification and correction. Finally, discussion and conclusions are
presented in Section 5.

2. LQG control for tip-tilt disturbance correction

LQG control is a globally optimal strategy for tip-tilt disturbances
correction and fully described in [23]. We recall, as in the reference,
that tip-tilt mirror can be regarded as a linear system and that there
is a two-frame loop delay. These assumptions for LQG control are
generally valid for current AO systems. Besides, the tip-tilt mirror
response is considered as instantaneous here with respect to the loop
sampling period (or frame) 𝑇 . So, the state–space representation of the
measurement equation can be described as follows:

𝑦𝑛 = 𝐶𝑋𝑛 −𝐷𝑁𝑢𝑛−2 +𝑤𝑛, (1)

where 𝐶, 𝐷 and 𝑁 denote measurement matrix, WFS characteristic
matrix and the tip-tilt mirror (TTM) influence matrix respectively. 𝑦𝑛
is the WFS measurements acquired between (𝑛 − 1)𝑇 and 𝑛𝑇 which
denotes the noisy measurement of the residual phase averaged over
[(𝑛 − 2)𝑇 , (𝑛 − 1)𝑇 ]. The tip-tilt disturbances phase 𝜑𝑛 and 𝜑𝑛−1 which,
respectively, denote the perturbation phase averaged over [(𝑛−1)𝑇 , 𝑛𝑇 ]
and [(𝑛−2)𝑇 , (𝑛−1)𝑇 ] composite the state 𝑋𝑛. The measurement matrix
𝐶, namely the observation matrix, denotes the relation between the
state 𝑋𝑛 and the WFS measurements. In other words, the relation can
be expressed as below:

𝑋𝑛 =

[

𝜑𝑛

𝜑𝑛−1

]

, (2)

𝑦𝑛 =
[

0 𝐷
]

⏟⏞⏟⏞⏟
𝐶

[

𝜑𝑛

𝜑𝑛−1

]

⏟⏞⏟⏞⏟
𝑋𝑛

−𝐷𝑁𝑢𝑛−2 +𝑤𝑛. (3)

𝑢𝑛−2 is the control voltage of the TTM with respect to the correction
phase 𝑁𝑢𝑛−2, which is constant with a zero-order hold during [(𝑛 −
2)𝑇 , (𝑛−1)𝑇 ], and 𝑤𝑛 is the measurement noise assumed to be zero-mean
white Gaussian noise with a variance 𝛴𝑤.

Besides, the tip-tilt disturbance temporal model can be described by
state–space vector 𝑋𝑛, as presented below:

𝑋𝑛+1 = 𝐴𝑋𝑛 + 𝑉𝑛, (4)

where 𝐴 denotes the model parameters matrix, which defines the
statistical characteristics of the tip-tilt disturbances, and 𝑉𝑛 is zero-mean
white Gaussian noise with a covariance matrix 𝛴𝑣.

With Eqs. (1)–(4), the state–space description of AO system is ac-
quired. Then the LQG control based on Kalman filter can be conducted,
which is shown in Eqs. (5–7) [24]:

�̂�𝑛∕𝑛 = �̂�𝑛∕𝑛−1 +𝐻∞(𝑦𝑛 − 𝐶�̂�𝑛∕𝑛−1 +𝐷𝑁𝑢𝑛−2), (5)
�̂�𝑛+1∕𝑛 = 𝐴�̂�𝑛∕𝑛, (6)
𝑢𝑛 = 𝑃 �̂�𝑛+1∕𝑛, (7)

where �̂�𝑛∕𝑛 is the estimation vector of 𝑋𝑛 obtained by using all the
measurements until 𝑛𝑇 . Tip-tilt correction is deduced thanks to a classis
least-square projection of the predicted disturbance phase onto the TTM.
The matrix 𝑃 = 𝑁−1(1, 0) extracts the predicted disturbance phase from
the predicted state vector and then projects it on the TTM to obtain the
control voltage. This amounts to the following expression for 𝑢𝑛:

𝑢𝑛 = 𝑁−1�̂�𝑛+1∕𝑛. (8)

𝐻∞ denotes the asymptotic gain of Kalman filter, which is defined as:

𝐻∞ = 𝛴∞𝐶𝑇 (𝐶𝛴∞𝐶𝑇 + 𝛴𝑤)−1, (9)

where 𝛴∞ is the asymptotic solution of a Riccati equation computed as
below [24]:

𝛴∞ = 𝐴𝛴∞𝐴𝑇 + 𝛴𝑣 − 𝐴𝛴∞𝐶𝑇 (𝐶𝛴∞𝐶𝑇 + 𝛴𝑤)−1𝐶𝛴∞𝐴𝑇 . (10)

The asymptotic gain of the Kalman filter is independent from measure-
ments which can be computed off-line. From Eqs. (5) and (6), LQG
control law performs the tip-tilt disturbances estimation via a Kalman
filter. The key issue is to build the filter with correct parameters,
i.e., with a correct temporal model of the tip-tilt disturbances.

3. Tip-tilt disturbance model identification based on spectrum

3.1. Temporal model of tip-tilt disturbances

Vibrations which cause tip-tilt disturbances are mainly from system
components such as cryo-coolers, fans and motors. Therefore, one
vibration can be described by a dampened oscillatory signal 𝜑𝑣𝑖𝑏 which
is generated by a forcing function 𝜉 at the pulsation 𝜔0 = 2𝜋𝑓𝑣𝑖𝑏
(natural frequency 𝑓𝑣𝑖𝑏) [16]. The dampened oscillatory signal 𝜑𝑣𝑖𝑏 can
be described by the second-order differential equation:

�̈�𝑣𝑖𝑏 + 2𝐾𝜔0�̇�
𝑣𝑖𝑏 + 𝜔0

2𝜑𝑣𝑖𝑏 = 𝐺𝜔0
2𝜉, (11)

where 𝐾 is the damping coefficient and 𝐺 is the static gain. In discrete-
time description, the dampened oscillatory signal 𝜑𝑣𝑖𝑏 can be described
by the second-order Auto-Regressive (AR2) model [16]:

𝜑𝑣𝑖𝑏
𝑛 = 𝑎1𝜑

𝑣𝑖𝑏
𝑛−1 + 𝑎2𝜑

𝑣𝑖𝑏
𝑛−2 + 𝑣𝑛, (12)

where 𝑣𝑛 is a zero-mean white Gaussian noise and the coefficients 𝑎1, 𝑎2
are defined by

𝑎1 = 2e−𝐾𝜔0𝑇 cos(𝜔0𝑇
√

1 −𝐾2), (13)
𝑎2 = −e−2𝐾𝜔0𝑇 . (14)

The damping coefficient 𝐾 is related to the vibration bandwidth. In
practice, the tip-tilt disturbances are affected by multiple vibrations
from different system components. The temporal model of the tip-tilt
disturbances can be described by a sum of dampened oscillatory signals
which are interpreted with the AR2 model [22]:

𝜑𝑛 = 𝜑𝑣𝑖𝑏,1
𝑛 + 𝜑𝑣𝑖𝑏,2

𝑛 +⋯ + 𝜑𝑣𝑖𝑏,𝑚
𝑛 , (15)

𝜑𝑣𝑖𝑏,𝑖
𝑛 = 𝑎𝑣𝑖𝑏,𝑖1 𝜑𝑣𝑖𝑏,𝑖

𝑛−1 + 𝑎𝑣𝑖𝑏,𝑖2 𝜑𝑣𝑖𝑏,𝑖
𝑛−2 + 𝑣𝑣𝑖𝑏,𝑖𝑛 . (16)

In fact, disturbances caused by atmospheric perturbation can also be
described by the dampened oscillatory signal [22]. Then it is followed
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