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a b s t r a c t

We present simple analytical formulae for the calculation of the spectral phase and residual angular dispersion
of an ultrashort pulse propagating through the Offner stretcher. Based on these formulae, we show that the radii
of curvature of both convex and concave mirrors in the Offner triplet can be adapted to tune the fourth order
dispersion term of the spectral phase of the pulse. As an example, a single-grating Offner stretcher design suitable
for the suppression of material dispersion in the Ti:Sa PALS laser system is proposed. The results obtained by
numerical raytracing well match those calculated from the analytical formulae.

© 2018 Published by Elsevier B.V.

1. Introduction

With the chirped pulse amplification (CPA) technique, ultrashort
laser pulses can be amplified to the PW scale [1–4]. Since modern laser
systems aim at a temporal contrast up to 10−12 with minimal pulse
broadening to avoid ionization of the experimental targets, it is essential
that the spectral phase of ultrashort pulses is precisely controlled. To
describe the effect of the residual spectral phase on the temporal profile
of a pulse, the phase is usually expanded in a Taylor series about the
central frequency. While the second derivative of the phase (group delay
dispersion — GDD) mostly induces pulse broadening, the third (third
order dispersion — TOD) and the fourth (fourth order dispersion —
FOD) derivatives also influence the pulse contrast. To reach transform-
limited pulses shorter than 100 fs, it is crucial to be able to adjust each
dispersion order individually.

There are two main sources of residual spectral phase in CPA
systems — the material dispersion present mainly in the amplification
chain (crystals, windows, etc.) and the aberrations of the stretcher
imaging system [5]. While the material dispersion cannot be avoided,
the stretcher aberrations can be eliminated with a two-grating Offner
stretcher design [6]. The material GDD and TOD can be compensated
by tuning of the angle of incidence on the gratings and the distance
between the gratings in the stretcher or compressor. The residual FOD
can then be suppressed by lowering the line density of the stretcher
gratings [5] or by taking advantage of the aberrations present in the
stretcher imaging system, as in the Banks design [7]. In general, these
methods are not suitable for all systems, as the line density tuning offers
only a relatively small FOD correction while the Banks design correction
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is usually too large. Also, the line density of the gratings required
for FOD compensation may not be commercially available. For these
reasons, some other methods have recently been proposed such as the
addition of a grism pair between the stretcher and the compressor [8].
Active compensation is also possible with an acousto-optic modulator,
but its range is also limited [9].

We propose a simple passive method for the correction of residual
FOD based on a subtle modification of the Offner stretcher imaging
system. This method extends the work of Zhang [10] and Molander [11],
who purposefully introduced aberrations into the imaging system of
the Offner stretcher to compensate the residual phase of the pulse. The
aberration-free Offner stretcher is composed of 2 gratings with an Offner
triplet in between wherein the first grating lies at the centre of curvature
of the first concave mirror. There are two simple possibilities for the
introduction of some additional spherical aberration in this design — the
first grating can be shifted closer to the first concave mirror [Zhang] or
the radius of curvature of the convex mirror can be adjusted [Molander].
Both of these modifications retain the 1:1 magnification of the imaging
system and the collimation of the beam, but they increase the spherical
aberration of the stretcher and they can be used advantageously to
compensate the residual FOD. These methods can be easily combined
in a single grating Offner stretcher configuration discussed in the next
section.

2. Theory

We employ the analytical theory which connects the Seidel aber-
rations with the spectral phase dispersion terms of the ultrashort
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Table 1
Aberration coefficients of an Offner triplet calculated according to the aberration theory presented in [12], where 𝐵 is a coefficient for spherical aberrations, C for astigmatism, D for field
curvature and F for coma.

Aberr. (𝑅1 = −2𝑅2) (𝑅1 ≠ −2𝑅2)

B (Sph.)
(𝑅1 − 𝑠)4

2𝑅3
1𝑠

4

𝑅8
1 − 3𝑅7

1𝑅2 + 8𝑅6
1𝑅2𝑠 + 4𝑅5

1𝑅
3
2 − 16𝑅5

1𝑅
2
2𝑠 + 24𝑅4
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2 + 32𝑅2
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4
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2 + 32𝑅2
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4

8𝑅3
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4
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4
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Fig. 1. A general schematic of a single-grating Offner stretcher. The object is defined
as the place where the pulse hits the diffraction grating. The 𝑋-axis is parallel with the
grating grooves, the 𝑌 -axis is perpendicular to the grating grooves and the optical axis of
the Offner triplet. The origin of the coordinate system is the intersection of the grating
plane and the optical axis of the imaging system.

pulse [13]. The analytical formulae are derived within the linear
approximation of the grating dispersion with respect to the frequency
and with the assumption that the pointing of the diffracted central
frequency component of the pulse is parallel with the optical axis of
the stretcher imaging system. If the imaging system has, for example,
a spherical aberration, then each frequency component acquires an
additional optical path distance which has a quartic dependence on
the radial distance from the optical axis at the entrance pupil (located
at the first concave mirror). Here, we review the main formulae and
apply them to the Offner stretcher. A general schematic of the Offner
stretcher with the coordinate system definition is sketched in Fig. 1. In
this paper, only a 2-pass stretcher design1 is discussed which allows
for the assumption that the 𝑦 offset in the diffraction plane is zero. All
dependence on 𝑦0 will therefore be omitted in the following calculations.

The FOD deviation FOD𝑎𝑏 can be calculated using the spherical
aberration coefficient 𝐵 and does not depend on the 𝑥 or 𝑦 offsets of
the object:

FOD𝑎𝑏 ≐ 24𝐵𝑠4
𝑚4𝑁4(2𝜋)4𝑐3

𝜔7
0cos

4(𝛽0)

(𝑅1=−2𝑅2)= 12
(𝑅1 − 𝑠)4

𝑅3
1

𝑚4𝑁4(2𝜋)4𝑐3

𝜔7
0cos

4(𝛽0)
,

(1)

where 𝑚 is the diffraction order, 𝑁 is the line density of the grating, 𝜔0 is
the central frequency of the pulse, 𝛽0 is the diffraction angle of the ray at
central frequency, 𝑠 is the distance from the grating to the first mirror
and 𝑐 is speed of light. The GDD deviation GDD𝑎𝑏 is induced by the
interplay of the spherical 𝐵, field curvature 𝐷 and coma 𝐹 coefficients

1 By 2-pass design we mean that the pulse is diffracted by the grating 4 times in total.

and grows quadratically with the 𝑥0 offset:

GDD𝑎𝑏 ≐ 2𝑥20(2𝐵 +𝐷 + 𝐹 )𝑠2
𝑚2𝑁2(2𝜋)2𝑐
𝜔3
0cos

2(𝛽0)

(𝑅1=−2𝑅2)= 2𝑥20
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𝑅3
1

𝑚2𝑁2(2𝜋)2𝑐
𝜔3
0cos
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.

(2)

The individual aberration coefficients of the Offner triplet necessary
for the evaluation of these formulae are presented in Table 1. The
coefficients for the Offner triplet with detuned 𝑅2 are rather complicated
and they are better understood graphically. By substitution of the
corresponding aberration coefficients from Table 1 into Eqs. (1) and (2),
we plot GDD𝑎𝑏 and FOD𝑎𝑏 profiles as functions of 𝑠 and 𝑅2 in Fig. 2. With
𝑅2 = −𝑅1∕2 the results meet expectations as the aberrations are zero at
the centre of curvature of the concave mirror (𝑠 = 𝑅1) and grow with
changes in 𝑠. Also, the decrease of the curvature of the convex mirror
leads to the decrease of FOD𝑎𝑏 and vice versa. Changes in 𝑅2 produce
offsets in the GDD𝑎𝑏 curves.

For the calculation of the residual angular dispersion of a system with
broad bandwidth, it is necessary to abandon the linear approximation.
Because there is no derivative with respect to the frequency required
in Eq. (10) from [13], the calculation is quite straightforward with
𝑅2 = −𝑅1∕2. The residual angular dispersion in the 𝑥𝑧 plane d𝜃𝑥(𝜆)
and 𝑦𝑧 plane d𝜃𝑦(𝜆) can be obtained using aberration coefficients from
Table 1:
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(
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1
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1
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)

;
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d(𝑥20(2𝐵 +𝐷 + 𝐹 )𝑠2𝜃(𝜆)2)
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(𝑅1=−2𝑅2)= 2𝑥0
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𝑅3
1

𝜃2(𝜆),

(3)

where 𝛼 is the angle of incidence and 𝜃(𝜆) is the angular deviation of
the wavelength component with respect to the central wavelength of
the pulse. The formulae for angular dispersion with arbitrary 𝑅2 can
be calculated in the same manner using coefficients from Table 1, but
we omit them here for the sake of clarity as they are very long and
do not offer much physical insight. According to the formulae for the
dispersion of an ideal stretcher/compressor [5], the residual GDD and
TOD from material dispersion can be compensated if we increase the
distance 𝑠 and decrease the angle of incidence 𝛼 in the stretcher. By this
adjustment, the deviation of the residual FOD is increased even more
due to the different GDD/TOD/FOD ratios of the diffraction grating and
the material dispersion. To compensate this, it is necessary to substitute
a certain spherical aberration coefficient 𝐵(𝑅1, 𝑅2, 𝑠) into Eq. (1) so that
the residual FOD equals 𝐹𝑂𝐷𝑎𝑏. In general, it is better to keep 𝑅2 fixed
to −𝑅1∕2 to minimize the residual angular dispersion. However, in some
cases, especially if the calculated 𝑅1 is approaching ∼ 1 m or less, the
aberrations originating from the 𝑥0 offset become relatively significant.
Then, it can be beneficial to detune 𝑅2 from the original value while

208



Download English Version:

https://daneshyari.com/en/article/7925735

Download Persian Version:

https://daneshyari.com/article/7925735

Daneshyari.com

https://daneshyari.com/en/article/7925735
https://daneshyari.com/article/7925735
https://daneshyari.com

