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a b s t r a c t

An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here.
We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis,
which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover,
we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE.
It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits
to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is
almost unchanged compared with AFZP at the same focus.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Fresnel diffractive optical elements are generally classified into
amplitude and phase type according to the modulation mode to incident
light. Amplitude Fresnel diffractive optical element is often referred
to as Amplitude Fresnel Zone Plate (AFZP). It is actually a circular
diffraction grating that focus the incident light to a series of foci along
the optical axis and therefore divides the energy into different foci. The
diffraction efficiency decreases with the increase of absolute value of the
diffraction order [1]. Phase Fresnel diffraction optical element mainly
include Phase Fresnel Zone Plate (PFZP) [2], Fresnel lens [3]. These
elements can modulate the energy of the incident light so that they could
have greater diffraction efficiency than AFZP.

In this paper, we will present an Amplitude and Phase Hybrid Modu-
lation Fresnel diffraction optical element (APHMFDOE). It is generated
by adding a diffraction phase profile to the transparent band of the
AFZP. The periodic distribution of amplitudes ensures the regular distri-
bution of a series of foci along the optical axis, while the phase profile is
used to modulate the incident so that the maximum diffraction efficiency
can be achieved at the desired position. Furthermore, when the primary
focal length is reduced by this way, the F-number is reduced as well.
However, the width of each zone does not decrease, which is equivalent
to increasing the width of each zone. In some applications of Fresnel
diffractive optical elements with large numerical aperture, for example
the Fresnel Corrector in the Schupmann system [4], APHMFDOE can
help to increase the design flexibility and machinability of the Fresnel
device to some extent.
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2. The theory and simulation of APHMFDOE

2.1. Theory derivation

As the structure of the AFZP is rotationally symmetric, the Fourier
series of the transmittance function of the AFZP g(𝑟) can be written as
follows (see Appendix):
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When the AFZP is perpendicularly illuminated by a plane wave
with unit amplitude, a series of light spot is aligned along the optical
axis at 𝑓, 𝑓∕3, 𝑓∕5,… , 𝑓∕𝑚 positions, where 𝑚 is an odd number. In
analogy to blazed grating, which is generated on the basis of grating
by adding a linear phase factor to it [5], APHMFDOE is generated by
adding a quadratic phase factor exp

(

𝑖𝑝𝑘𝑟2∕2𝑓
)

to g (𝑟), 𝑝 is a real number
which is used to regulate the phase factor. Therefore one can obtain the
transmittance function of the APHMFDOE 𝑔′ (𝑟) as follows:

𝑔′ (𝑟) =
+∞
∑

𝑚=−∞
𝑔′𝑚 (𝑟) (3)
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Fig. 1. The surface type of APHMFDOE.

Fig. 2. The normalized axial intensity distribution of AFZP.
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From the Eq. (4), we know that the focus of the mth order diffraction
light is moved from the position of 𝑓∕𝑚 to 𝑓∕ (𝑚 + 𝑝). In addition, zero-
order light is introduced to focus at the 𝑓∕𝑝 position. For a more intuitive
understanding of APHMFDOE, we draw a diagram of the surface type of
APHMFDOE in Fig. 1, in which the shaded part is opaque. The height of
the phase profile is related to the quadratic phase factor and refractive
index of the material. The detailed surface type will be discussed in the
following contents.

2.2. Comparison of simulation results of APHMFDOE and AFZP

Consider an AFZP with diameter of 1.2 mm and focal length of
10 mm at wavelength of 632.8 nm, which is perpendicularly illuminated
by a plane wave with unit amplitude. From the Fresnel diffraction
integral formula, the corresponding diffracted field 𝑈 (𝑧) along the
optical axis can be expressed as [6]:

𝑈 (𝑧) = 𝑘
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exp (𝑖𝑘𝑧)∫
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0
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)
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where 𝑘 = 2𝜋∕𝜆 is the wave number, 𝜆 is the wavelength, 𝑖 is the
imaginary unit. Based on the Eq. (5), one can obtain the normalized
light intensity distribution along the optical axis which is showed in
Fig. 2.

To observe the modulation effect to the energy of the incident light
by APHMFDOE, two different quadratic phase factors with different
values of p are added to AFZP. After that, two different APHMFDOEs are
obtained so as to compare with the AFZP mentioned above. When they
are perpendicularly illuminated by plane waves with unit amplitude,
the energy is redistributed along the optical axis showed in Fig. 3.

From the above figures, one can obtain that the simulation results
are in good agreement with the theoretical formulas. First, it is clear to
see that APHMFDOE can change the intensity distribution of light on the
axis compared with the result in Fig. 2. Second, the foci are moved to
different positions when 𝑝 takes different value, and the moving distance
is related to the value of 𝑝. For example, tracking 1th-order diffraction
light, we can find that the corresponding focus is shifted to the left
with different distances in Fig. 3. That is to say the focal length can
be changed to the desired value when choosing the appropriate value
of 𝑝. More importantly, the distribution of Fresnel zone width does not
change in the process of focal length change.

Fig. 3. The axial intensity distribution of APHMFDOEs with different value of p. The
values of 𝑝 are (a) 𝑝 = −0.5, (b) 𝑝 = −1 and (c) 𝑝 = −2. The symbol ‘*’ indicates the theory
position of AFZP’s diffraction focus, while the numbers 0, 1 and 3 indicate the position of
zero-order, 1th-order and 3th-order diffraction light.

From the above theory, it seems that we can modulate the main focus
to any position if we choose an appropriate value of p. However, we
have to add some restrictions to the phase component to ensure the
reliability of the theory and the machinability of the APHMFDOE. In
terms of the reliability of the above theory, some constraints must be
added to the value of 𝑝 to ensure the applicability and reliability of
the paraxial diffraction theory. First, we introduce the Fresnel number
showed in Eq. (6) [7].

𝐹 = 𝑅2

𝜆𝑧
(6)

where 𝑅 is the radius of APHMFDOE, 𝑧 is the distance from the ob-
servation surface to APHMFDOE. In general, the Fresnel approximation
works well when 𝐹 > 1 [7]. For the mth diffraction order, the distance
𝑧 is |𝑓∕ (𝑚 + 𝑝)|. Substituting 𝑧 and the constraint of 𝐹 into Eq. (6), one
can obtain

|𝑚 + 𝑝| >
𝜆𝑓
𝑅2

(7)

So the 𝑝 in the phase must first satisfy the Eq. (7).
In terms of machinability of the APHMFDOE, the phase component

makes the APHMFDOE more complicated for processing. In order to
make the APHMFDOE easier to process, we must first ensure that the
profiles of the phase component must be continuous in a transparent
band. This can be satisfied as long as the maximum phase shift in a
transparent band is equal to 𝑛𝜋 or 2𝜋∕𝑛, 𝑛 is a positive integer. For the
added phase factor exp

(

𝑖𝑝𝑘𝑟2∕2𝑓
)

, that is to say, the value of 𝑝 or 2∕𝑝 in
it must be an integer. In order to understand the above conditions more
clearly, we have drawn the surface types of different APHMFDOE with
different values of 𝑝 in Fig. 4. However, we find that the APHMFDOE
introduces the thin-walled structure when −1 < 𝑝 < 0, which is difficult
to process. On the contrary, when 𝑝 < −1, the surface type of the

45



Download English Version:

https://daneshyari.com/en/article/7925767

Download Persian Version:

https://daneshyari.com/article/7925767

Daneshyari.com

https://daneshyari.com/en/article/7925767
https://daneshyari.com/article/7925767
https://daneshyari.com

