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a b s t r a c t

The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally
for many years. In this paper, we have experimentally observed for the first time the formation of the cusped
caustic (for the Fresnel number 𝐹 ≈ 100) in the shadow region of the straight edge, with the cusp placed near the
center of the circular laser beam(𝜆 = 0.65 μm) overlapped with the elliptical diffraction fringes. These fringes are
originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular
(the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave
created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed
that the number of high contrast diffraction fringes observable in a shadow region is determined by the square
of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with
experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary
as the fork-like diffraction fringes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This work was stimulated by the unusual experimental observation
of the elliptical diffraction fringes in the shadow region of the straight
edge by diffraction of the laser beam with a finite diameter.

The problem of light diffraction on half plane attracted the attention
of theorists when using the diffraction theory proposed by Kirchhoff [1].
Sommerfeld first suggested the rigorous solution of such a prob-
lem [1,2]. Theoretical and experimental verification of the Kirchoff’s
approximation for a Gaussian beam with a finite diameter was done for
the first time when studying diffraction on a half plane [3]. Another
notable analysis was done in the work [4] using a converging beam.
The authors of the works [5–7] theoretically investigated diffraction of
a Gaussian beam on a half-plane. In the work [8] it was shown that at
laser beam diffraction on a half-plane there arises an edge dislocation
wave at the edge of the screen propagating in a shadow region. The
structure of the field formed on diffraction of a Gaussian beam by an
edge was studied rigorously in [9]. It was shown that the field diverging
from the edge represents the superposition of cylindrical components,
propagating as Young’s boundary wave, produced by diffraction of the
laser beam with a finite diameter.

However, such features as observation of the cusped caustic over-
lapped with high contrast elliptical diffraction fringes in the shadow of
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the straight edge, blocking more than a half of a circular laser beam,
remained outside the scope of those papers.

In this paper, we have investigated the experimental conditions when
a cusped caustic, an optical vortex and elliptical diffraction fringes
occur in the shadow region of the straight edge shifted off the center
of the circular laser beam. Within the edge-diffracted cusped caustic
the necessary theoretical conditions [10–13] of the formation of the
optical vortex are satisfied that leads to the formation of the diffracted
wave front shaped as a helical surface. We have shown by numerical
calculations that the Fresnel–Kirchhoff (FK) diffraction integral is not
capable correctly represent the diffraction pattern consisting the edge-
diffracted cusped caustic (𝐹 ≥ 100) and the diffraction catastrophes’
theory can be applied [13]. For Fresnel numbers 𝐹 ≤ 30 (the cusped
caustic is not present), the numerical calculations by the FK integral
produce diffraction patterns in good agreement with experimental one.

We may point out that the application of the FK integral rigorous
solutions is not possible for the used experimental conditions.

1.1. Experiment

The experiment was performed using a circular laser beam with a
small angular divergence, a beam diameter of 4 mm, and wavelength
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of 0.65 μm. One half or more of a circular laser beam was blocked by
the screen edge. In the first series of experiments the diffraction pattern
located at different distances from the screen edge was projected on the
observation screen by a lens with magnification allowing to record an
image of the diffraction fringes near the boundary of the lighted area. In
the second series of experiments the diffraction was studied at distances
of 15 and 60 cm from the screen edge. The screen edge was shifted off
the center gradually to block an increasing part of the beam (see video
in the supplemental material).

1.2. Numerical calculations

The Fresnel–Kirchhoff diffraction integral applied for calculation of
the wave amplitude and phase at the point of observation is represented
by the well-known formula [1]:
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Since the laser is used in experiments, a Gaussian amplitude distri-
bution across the beam is applied:
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𝑤0 — the minimum radius of the beam cross-section ; 𝑧0 — the beam
cross-section offset relative to the minimal cross-section.

Let the beam minimal cross-section coincides with the plane of
the aperture 𝑧0= 0, and the amplitude of the beam at the point of
observation
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Numerical integration (3) is performed by all cells of the partition of
the aperture for each cell of the partition of the observation plane. The
intensity and phase are calculated using the complex amplitude. The
intensity is presented in relative units.

The integral has oscillating terms that lead to instability of the
numerical solution. This problem was solved by increasing the number
of nodes in the plane of the aperture. The number of nodes is selected
depending on the size of the aperture and the distance to the observation
plane. In particular, a satisfactory result (based on comparison with ex-
periment) was obtained with a number of nodes greater than 400 × 400
for the aperture diameter 𝑑 = 4 mm.

The intensity and phase are displayed using a gradient scale. The
distribution of the intensity can vary over a wide range. In this case, the
overexposure is applied for clarity. In particular, it is used to display the
intensity in the area of the geometric shadow.

2. Results

In the first series of experiments, we observed the formation of the
cusped caustic overlapped with the elliptical diffraction fringes in the
shadow region of the edge. The cusped caustic was observed for the
Fresnel number 𝐹 ≈ 100, 60 mm distance from the edge shifted off

1 mm from the beam center (an 𝑥 axis direction), with the cusp placed
near the center of the circular laser beam (shown in Fig. 1(a)). These
results shows that the elliptical diffraction fringes start from the region
near the cusp of the caustic where light intensity is zero and the wave
phase is singular (the optical vortex).

The numerical calculations have shown that the FK diffraction inte-
gral is not capable correctly represent the diffraction pattern consisting
the edge-diffracted cusped caustic and the diffraction catastrophes’
theory should be applied in this case [13]. At the distances of 150 mm
and longer from the aperture (the cusped caustic is not present), the
numerical calculations by the FK integral produce diffraction patterns
well correlated with experimental one. The example of the diffraction
pattern recorded at the distance of 180 mm from the aperture is shown
in Fig. 1(b) alongside with the numerical calculations shown in Fig. 1(c)
and (d) (the 2D wave intensity and 2D phase). The FK theoretical pattern
is in good agreement with the experimental one. These results shows
that the elliptical diffraction fringes start from the region near the
cusp of the caustic where light intensity is zero and the wave phase
is singular (the optical vortex). The phase singularity (optical vortex) is
clear observed in the 2D wave phase pattern (shown by the blue arrow)
in the point where the wave intensity is zero. We interpret observed
diffraction fringes as a result of interference between the helical wave
created by the optical vortex and cylindrical wave diffracted at the edge
of the screen.

In the diffraction catastrophes’ theory the cusped caustic is classified
as the Pearcey diffraction catastrophe [13]. The cusp is one of the
caustics stable forms. We used the thin transparent sheet of the plastic
placed in the laser beam to inset the strong phase perturbations in the
laser wave front before diffraction by the straight edge. The resulting
diffraction pattern is shown in Fig. 1(e). The elliptical diffraction fringes
are practically vanished but the caustic‘s cusp has survived (shown by
the blue arrow in Fig. 1(e)). Diffraction at the distance of 15 mm from
the straight edge is shown in Fig. 1(f). A cylindrical edge dislocation
(CED) wave [9] is visualized in the shadow transition region as dark
and white diffraction fringes parallel to the straight edge (shown by the
blue arrow). Few elliptical diffraction fringes are clearly observed in the
central part of the shadow region due to interference of a helical wave
and a CED wave.

The momentum flux carried by the laser beam is 𝒈⊥(𝒓) ∼ 𝐼(𝒓)∇𝜑(𝒓),
where 𝐼(𝒓) is the light’s intensity and 𝜑(𝒓) is a transverse phase dis-
tribution of the laser field [14]. The beam of light with the helical
phase distribution transports an orbital angular momentum (OAM) flux,
𝒓 × 𝒈⊥(𝒓) [15].

We numerically calculated the momentum flux 𝒈⊥(𝒓) carried by the
diffracted beam using the intensity and phase distribution data shown
in Fig. 1(c) and (d). The calculated momentum flux pattern relating to
the projection of the vector 𝒈⊥ (𝒓) on 𝑥-axis is shown in Fig. 1(g) where
the white–black color corresponds to the negative values of ∇𝑥𝜑(𝒓) and
the red color relates to the positive one. Yellow arrows shown in this
figure visualize the 𝒈⊥ (𝒓) in points of interest.

The circulation of the momentum flux along elliptical lines placed
around the point with zero intensity is a direct evidence of the helical
wave carrying the OAM. In addition, the cylindrical waves propagated
in the shadow of the straight edge and in the illuminating beam area are
clearly visualized.

Experiments and FK integral numerical calculations solved the prob-
lem of occurrence and number of high contrast diffraction fringes at the
different distances (𝑧 = 20, 30, 40, 50, 60 cm) from the screen edge. The
resulting diffraction patterns are presented in Fig. 2 alongside with the
results of numerical calculations. The top horizontal row in Fig. 2 shows
the experimental diffraction patterns. The second horizontal row from
the top represents numerical calculations of the 2D intensity, and the
third and fourth rows from the top show the 2D phase. The lines of the
constant phase equal to (0 ± 0.1) radian are selected on the numeric
2D phase diagram (fourth row from the top in yellow, visualizing the
2D zero phase of the cylindrical wave). On the same chart, the spiral
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