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a b s t r a c t

Using the method of Laplace transform the field amplitude in the paraxial approximation is found in the two-
dimensional free space using initial values of the amplitude specified on an arbitrary shaped monotonic curve.
The obtained amplitude depends on one a priori unknown function, which can be found from a Volterra first kind
integral equation. In a special case of field amplitude specified on a concave parabolic curve the exact solution
is derived. Both solutions can be used to study the light propagation from arbitrary surfaces including grazing
incidence X-ray mirrors. They can find applications in the analysis of coherent imaging problems of X-ray optics,
in phase retrieval algorithms as well as in inverse problems in the cases when the initial field amplitude is sought
on a curved surface.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Since the pioneering works of Leontovich and Fock [1] the parabolic
wave equation (PWE) is widely used in many fields of physical and
engineering sciences to describe the propagation of paraxial or quasi-
paraxial beams in free space as well as in inhomogeneous media. It
was successfully applied for solution of complex problems in laser
physics [2], electromagnetic radiation propagation [3], underwater
acoustics [4,5], X-ray optics [6], microscopy and lensless imaging [7,8].
This versatile nature of the PWE encourages searching for new applica-
tions and new methods of its solution.

One of the areas that can benefit greatly from such new methods is
the coherent X-ray imaging [9,10], which has been made possible by
the development of powerful, versatile and coherent or quasi-coherent
X-ray sources such as laboratory X-ray lasers [11–13], free electron
lasers [14] and high order harmonics sources [15]. The coherent X-ray
imaging offers several advantages over traditional imaging techniques:
a possibility of the lensless imaging and phase retrieval [16], diffraction
imaging [17], a sub-picosecond temporal resolution, etc. However, the
coherent X-ray imaging, particularly in the reflective mode, poses a
number of rather complicated mathematical problems [18,16]. One
of them is appropriate description of the radiation field propagation
starting from an arbitrary surface, which in general case can be non-flat,
off-axis and tilted (see Fig. 1).
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It should be noted that one of the underutilized mathematical
properties of the PWE is a possibility to express the field amplitude in
a part of free space through the initial values of amplitude specified on
an arbitrary shaped line or surface. The case of a tilted straight line or
plane was studied in [19–22] for applications in grazing incidence re-
flective microscopy and lithography. The present paper extends the PWE
solution to a more general case of the initial surface being an arbitrary
shaped one-dimensional monotonic curve. The parabolic initial curve
and corresponding exact PWE solution will be also discussed.

2. Direct problem on an arbitrary curve

2.1. General case

Let us consider the 2D PWE for the field amplitude 𝑢 in coordinates
(𝑥, 𝑧) [3], where 𝑧 is the longitudinal coordinate along the beam
propagation direction

𝑖 𝜕𝑢
𝜕𝑧

+ 𝜕2𝑢
𝜕𝑥2

= 0, (1)

where it is assumed for simplicity that the wave number 𝑘 = 1∕2. Let us
assume that 𝑢 is known at some 2D initial curve (see Fig. 1), which is
defined by the following equation

𝑥 − 𝑔(𝑧) = 0, 𝑔(0) = 0, 𝑢0(𝑧) = 𝑢(𝑔(𝑧), 𝑧), (2)
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Fig. 1. A scheme showing the position of initial curve with field amplitude values 𝑢0(𝑧)
together with the image plane. The coordinate definitions are also shown.

where 𝑔(𝑧) is a monotonic positive function. Let us introduce new
coordinates 𝑧′ and 𝑥′ as

𝑧′ = 𝑧,
𝑥′ = 𝑥 − 𝑔(𝑧).

(3)

In the new coordinates Eq. (1) can be rewritten as:

𝑖 𝜕𝑢
𝜕𝑧

= 𝑖𝑔′(𝑧) 𝜕𝑢
𝜕𝑥

− 𝜕2𝑢
𝜕𝑥2

(4)

with the initial condition 𝑢(0, 𝑧) = 𝑢0(𝑧) specified at the line 𝑆′ (𝑥′ = 0)
parallel to the axis 𝑧. In Eq. (4) prime marks of coordinates, for the sake
of brevity, were omitted. The Eq. (4) can be solved using the Laplace
transform by coordinate 𝑥

𝐹 (𝑤, 𝑧) = ∫

∞

0
𝑢(𝑥, 𝑧) exp(−𝑤𝑥) 𝑑𝑥. (5)

Applying it to Eq. (4) one can obtain the following differential equation
for the function 𝐹 (𝑤, 𝑧)

𝑖𝐹 ′
𝑧 = 𝑖𝑔′(𝑧)𝑤𝐹 − 𝑖𝑔′(𝑧)𝑢0 −𝑤2𝐹 +𝑤𝑢0 + 𝑢1, (6)

where the transversal derivative

𝑢1 = 𝑢′𝑥(0, 𝑧). (7)

A solution of Eq. (6) can be written as

𝐹 (𝑤, 𝑧) = −∫

𝑧

−∞

(

𝑔′(𝑧′) + 𝑖𝑤
)

𝑢0(𝑧′) exp
[

(𝑖𝑤 + 𝐺)𝑤(𝑧 − 𝑧′)
]

𝑑𝑧′

− 𝑖∫

𝑧

−∞
𝑢1(𝑧′) exp

[

(𝑖𝑤 + 𝐺)𝑤(𝑧 − 𝑧′)
]

𝑑𝑧′, (8)

where

𝐺(𝑧, 𝑧′) =
∫ 𝑧
𝑧′ 𝑔

′(𝜉) 𝑑𝜉
𝑧 − 𝑧′

=
𝑔(𝑧) − 𝑔(𝑧′)

𝑧 − 𝑧′
. (9)

To obtain amplitude 𝑢 one should apply the reverse Laplace transform

𝑢(𝑥, 𝑧) = 1
2𝜋𝑖 ∫

𝑐+𝑖∞

𝑐−𝑖∞
exp[𝑤𝑥]𝐹 (𝑤, 𝑧) 𝑑𝑤, 𝑐 ≥ 0. (10)

Since the expression under integral in (10) must not have any non-
regularities in the right semi-plane of 𝑤 (including the imaginary
axis), it is assumed that 𝑐 = 0. The absence of non-regularities is a
direct consequence of a, so called, transparent boundary condition [23].
Furthermore, taking into account that

𝐼1 = 1
2𝜋𝑖 ∫

+𝑖∞

−𝑖∞
exp[𝑤𝑥 + (𝑖𝑤 + 𝐺)𝑤(𝑧 − 𝑧′)] 𝑑𝑤

= 1

2
√

𝜋𝑖
√

𝑧 − 𝑧′
exp(𝑖𝛷′), (11)

and that

𝐼2 = 1
2𝜋𝑖 ∫

+𝑖∞

−𝑖∞
𝑤 exp[𝑤𝑥 + (𝑖𝑤 + 𝐺)𝑤(𝑧 − 𝑧′)] 𝑑𝑤

= 1
2𝜋𝑖

𝜕
𝜕𝑥 ∫

+𝑖∞

−𝑖∞
exp[𝑤𝑥 + (𝑖𝑤 + 𝐺)𝑤(𝑧 − 𝑧′)] 𝑑𝑤

= 1

2
√

𝜋𝑖
√

𝑧 − 𝑧′
𝜕
𝜕𝑥

exp(𝑖𝛷′)

= 𝑖1∕2

4
√

𝜋
√

𝑧 − 𝑧′

(

𝐺 + 𝑥
𝑧 − 𝑧′

)

exp(𝑖𝛷′), (12)

where

𝛷′ =
(𝑧 − 𝑧′)

4

(

𝐺 + 𝑥
𝑧 − 𝑧′

)2
,

and then substituting (11) and (12) into (10) and (8), one obtains the
following final expression for the field amplitude 𝑢

𝑢(𝑥, 𝑧) = − 1
2
√

−𝜋𝑖 ∫

𝑧

−∞

𝑢1(𝑧′)
√

𝑧 − 𝑧′
exp(𝑖𝛷′) 𝑑𝑧′

+ 1
4
√

𝜋𝑖 ∫

𝑧

−∞
(𝐺 − 2𝑔′(𝑧′))

𝑢0(𝑧′)
√

𝑧 − 𝑧′
exp(𝑖𝛷′) 𝑑𝑧′

+ 𝑥
4
√

𝜋𝑖 ∫

𝑧

−∞

𝑢0(𝑧′)
(𝑧 − 𝑧′)3∕2

exp(𝑖𝛷′) 𝑑𝑧′. (13)

Expression (13) depends on two functions – 𝑢0 and 𝑢1 although the initial
conditions (2) specify only one of them – 𝑢0. To find 𝑢1 let us assume
𝑥 = 0 in formula (13). In this case, because

lim
𝑥→0

𝑥∫

𝑧

−∞

𝑢0(𝑧′)
(𝑧 − 𝑧′)3∕2

exp(𝑖𝛷′) 𝑑𝑧′ =
2
√

𝜋
√

−𝑖
𝑢0(𝑧), (14)

one can obtain the following integral equation of the Volterra first kind
for 𝑢1

𝑢0(𝑧) = − 1
√

−𝜋𝑖 ∫

𝑧

−∞

𝑢1(𝑧′)
√

𝑧 − 𝑧′
exp(𝑖𝛷) 𝑑𝑧′

+ 1
2
√

𝜋𝑖 ∫

𝑧

−∞
(𝐺 − 2𝑔′(𝑧′))

𝑢0(𝑧′)
√

𝑧 − 𝑧′
exp(𝑖𝛷) 𝑑𝑧′, (15)

where

𝛷 =
(𝑧 − 𝑧′)

4
𝐺2, (16)

which must be solved before the field amplitude 𝑢 can be calculated
using formula (13).

A problem similar to one discussed here was considered in [24, see
p. 521 — boundary problems for regions with moving boundaries]. The
method used for PWE solution in the present work allowed one to obtain
simpler expressions which have not been explicitly written before.

2.2. Tilted line

Let us consider the case when the initial curve (2) is a tilted (inclined)
straight line. One can try to obtain the already known formula to check
correctness of the derived result. So, one has

𝑐𝑜𝑛𝑠𝑡 = 𝑔′(𝑧) = 𝐺(𝑧, 𝑧′) = − tan 𝜃, (17)

where 𝜃 is the angle between this tilted line and the axis 𝑧. Now it follows
from (15) that 𝑢1 can be expressed through 𝑢0 as

𝑢1(𝑧) = − 𝑖
2
tan 𝜃 − 𝑖3∕2

√

𝜋
𝜕
𝜕𝑧 ∫

𝑧

−∞

𝑢0(𝜉)
√

𝑧 − 𝜉
exp

[ 𝑖
4
tan2𝜃(𝑧 − 𝜉)

]

𝑑𝜉. (18)

Expression (18) is (as was said above) the transparent boundary condi-
tion for Eq. (4) [23]. Now substituting (18) into (13) and applying the
necessary transformations it is possible to show that

𝑢(𝑥, 𝑧) = 𝑥
2
√

𝜋𝑖 ∫

𝑧

−∞

𝑢0(𝜉)
(𝑧 − 𝜉)3∕2

× exp

[

𝑖(𝑧 − 𝜉)
4

(

tan 𝜃 − 𝑥
𝑧 − 𝜉

)2
]

𝑑𝜉. (19)

Taking into account that 𝑥 in (19) is in reality 𝑥′ with omitted prime
mark, and substituting its expression 𝑥′ = 𝑥 + 𝑧 tan 𝜃 into (19) it can be
obtained that

𝑢(𝑥, 𝑧) = 𝑥 + 𝑧 tan 𝜃
2
√

𝜋𝑖 ∫

𝑧

−∞

𝑢0(𝜉)
(𝑧 − 𝜉)3∕2

exp
[

𝑖(𝑥 + 𝜉 tan 𝜃)2

4(𝑧 − 𝜉)

]

𝑑𝜉. (20)
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