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a b s t r a c t

Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between
known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although
CGI can obtain two- or three-dimensional images with a single or a few bucket detectors, the quality of the
reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study,
we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn
the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images
from new noise-contaminated CGI images.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Computational ghost imaging (CGI) [1] has garnered attention in
recent years as a promising single-pixel imaging method. In CGI, we
project several known random patterns onto the object to be imaged and
then use a lens to collect the light transmitted an object or reflected by
an object. The light intensities are measured by a bucket detector, such
as a photodiode. An image of the object is then created by calculating
the correlations between the known random patterns and the measured
light intensities. CGI can image objects even in noisy environments.

Originally, CGI only measured the light intensity of objects, but
methods have also been devised for measuring its phase [2,3]. The
acquisition time for CGI schemes is long as they require a large number
of illuminating random patterns to objects. Recently, the situation has
been improved by using high-speed random pattern illumination [4,5].
In addition, three-dimensional [6] and multi-spectrum CGI [7] have
been developed.

Since random patterns are used to create the object images, the
reconstructed images are contaminated by noise. To improve the quality
of CGI images, improved correlation calculation methods have been
devised, such as differential [8] and normalized CGI [9]. Iterative
optimization schemes based on the Gerchberg–Saxton algorithm [10]
as well as compressed sensing [7,11] have also been applied to CGI.
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In this study, we propose an approach to improve CGI image quality
by using deep learning [12] and confirm our technique’s effectiveness
through simulations. Deep neural networks (DNNs) can learn features
for the noisy images reconstructed by CGI schemes automatically. We
used a dataset of 15,000 images and their CGI reconstructions to train a
network. After training, the network could predict lower-noise images
from new noisy CGI images that were not included in the training
set. In Section 2, we describe our DNN-based CGI scheme. Section 3
presents the simulation results and demonstrates the effectiveness of
the proposed method. Finally, Section 4 presents the conclusions of this
study.

2. Proposed method

In this section, we first outline the CGI scheme used and then we
describe the architecture of the DNN.

2.1. Computational ghost imaging

We use a differential CGI [8] scheme because its image quality is
superior to that of traditional CGI [1]. The optical setup required for
differential CGI is shown in Fig. 1.
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Fig. 1. Optical setup for differential CGI.

In this scheme, a sequence of random patterns is shown on a
spatial light modulator (SLM). We denote the 𝑖th random pattern as
𝐼𝑖(𝑥, 𝑦). The light transmitted by the SLM is divided into two beams
by a beam splitter. One beam then irradiated the object to be imaged,
and the light transmitted by the object is collected by a lens, and its
intensity 𝑆𝑖 is measured by a bucket detector for each 𝐼𝑖(𝑥, 𝑦). The
other beam is immediately focused by a lens, and its intensity 𝑅𝑖 is
measured by another bucket detector for each 𝐼𝑖(𝑥, 𝑦). The final image
𝑂(𝑥, 𝑦) that is reconstructed by differential CGI is then calculated as
follows:

𝑂(𝑥, 𝑦) = ⟨𝑂𝑖(𝑥, 𝑦)⟩𝑁 , (1)

where ⟨𝑎𝑖⟩𝑁 = 1
𝑁
∑𝑁

𝑖 𝑎𝑖 denotes the ensemble average over all 𝑁 random
patterns. The 𝑂𝑖(𝑥, 𝑦) are calculated as follows:

𝑂𝑖(𝑥, 𝑦) =
(

𝑆𝑖
𝑅𝑖

−
⟨𝑆𝑖⟩𝑁
⟨𝑅𝑖⟩𝑁

)

(

𝐼𝑖(𝑥, 𝑦) − ⟨𝐼𝑖(𝑥, 𝑦)⟩𝑁
)

. (2)

As can be seen from Eq. (2), the reconstructed image is expressed as
a superposition of the random patterns; thus, the resulting image is
noisy. Fig. 2 shows a series of example images that are reconstructed
by differential CGI. The images are arranged from left to right in
such a manner that the original image is followed by images that are
reconstructed using 𝑁 = 1, 000, 2,000, 5,000, and 10,000 patterns. As
the number of random pattern 𝑁 increases, the image quality gradually
improves. However, it increases the processing and measurement time
of differential CGI.

2.2. Improving image quality using a deep neural network

In this study, we use a DNN to improve the quality of CGI images.
Fig. 3 shows the proposed network structure which is called U-Net [13].
This network was originally used for image segmentation, but it can also
be used for image restoration [14].

The network consists of the following two paths: a constructing
path and expansive path. These paths include convolution, max-pooling,
and up-sampling layers denoted as ‘‘Conv’’, ‘‘MaxPooling’’ and ‘‘UpSam-
pling’’, respectively. The convolution layers generate feature maps for

Fig. 2. Example images reconstructed by differential CGI. From left to right, these are the original image that is followed by images reconstructed using 𝑁 = 1, 000, 2,000, 5,000, and
10,000 patterns.

Fig. 3. Our network structure [13]. This network was originally used for image segmentation, but, it can be also used for image restoration [14].
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