
Optics Communications 413 (2018) 269–275

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Single-pixel non-imaging object recognition by means of Fourier spectrum
acquisition
Huichao Chen, Jianhong Shi *, Xialin Liu, Zhouzhou Niu, Guihua Zeng
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory on Navigation and Location-based Service, and Center of
Quantum Information Sensing and Processing, Shanghai Jiao Tong University, Shanghai 200240, China

a r t i c l e i n f o

Keywords:
Data processing by optical means
Computational ghost imaging
Image recognition
Optical processing

a b s t r a c t

Single-pixel imaging has emerged over recent years as a novel imaging technique, which has significant
application prospects. In this paper, we propose and experimentally demonstrate a scheme that can achieve
single-pixel non-imaging object recognition by acquiring the Fourier spectrum. In an experiment, a four-step
phase-shifting sinusoid illumination light is used to irradiate the object image, the value of the light intensity is
measured with a single-pixel detection unit, and the Fourier coefficients of the object image are obtained by a
differential measurement. The Fourier coefficients are first cast into binary numbers to obtain the hash value. We
propose a new method of perceptual hashing algorithm, which is combined with a discrete Fourier transform to
calculate the hash value. The hash distance is obtained by calculating the difference of the hash value between
the object image and the contrast images. By setting an appropriate threshold, the object image can be quickly
and accurately recognized. The proposed scheme realizes single-pixel non-imaging perceptual hashing object
recognition by using fewer measurements. Our result might open a new path for realizing object recognition
with non-imaging.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Single-pixel imaging techniques are often referred to as ghost imag-
ing (GI). As a new technology and an intriguing method, over the past
20 years, ghost imaging has attracted great attention and achieved
significant development. In the 1980s, the former Soviet Union scholar
Klyshko proposed a ghost imaging scheme according to the entan-
glement behavior of spontaneous parametric down-conversion photon
pairs [1]. A research team at the University of Maryland realized ghost
imaging based on an entanglement source in 1995 [2,3]. Later, scholars
confirmed that pseudothermal light and thermal light can also be used in
ghost imaging [4–12]. In 2009, Bromberg realized computational ghost
imaging [13–15] through a spatial light modulator (SLM) preset light
source. In recent years, some new ghost imaging schemes have been
proposed. These include differential ghost imaging (DGI) [6], compres-
sive sensing ghost imaging (CSGI) [5], correspondence ghost imaging
(CGI) [16,17], sinusoidal ghost imaging (SGI) [18], and Fourier ghost
imaging [19]. Ghost imaging can break through the diffraction limit to
achieve high-resolution imaging [20,21]. In view of the above research,
ghost imaging has potential applications in remote sensing [22,23],
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image encryption, weak light detection, and the imaging of penetrating
scattering media.

In recent years, the focus of research on ghost imaging has in-
creasingly turned from basic research to practical applications [24],
especially with regard to interdisciplinary applications. Previous work
realized object authentication in other ways through ghost imaging
[25–28]. The proposed methods promoted the further application of
ghost imaging in the direction of object recognition. It is necessary to
reconstruct the object image in order to realize object recognition. The
imaging process not only increases the complexity of the computation
but also lengthens the time required for object authentication. However,
to our knowledge, no single-pixel technique has successfully achieved
non-imaging object recognition thus far.

The perceptual hashing algorithm (PHA) [29–33] is a hash algorithm
that is mainly applied in the search for similar images. Perception
hashing technology converts image data into thousands of binary se-
quences [29]. It is a promising and effective method to solve image
content authentication. Specifically, PHA generates a ‘‘fingerprint’’ for
each image. Traditionally, a metric must be defined to measure the
distance between ‘‘fingerprints.’’ The hash distance metric used in the
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Fig. 1. Flowchart of non-imaging perceptual hashing object recognition.

previous scheme is the bit error rate (BER) or the normalized Hamming
distance [29,32]. The features of perceptual hashing are robust and
secure. PHA can be applied to image content identification, retrieval,
and authentication. Generally, PHA [31] calculates the hash value by
computing the image of a discrete cosine transform (DCT) coefficient
matrix. In Fourier ghost imaging [19] schemes, the Fourier coefficient
matrix of the object image can be obtained directly by differential
measurement using sinusoid structured illumination patterns instead of
a random speckle pattern. We find that the PHA combined with Fourier
ghost imaging has a more practical application.

In this paper, we present a single-pixel non-imaging perceptual
hashing object recognition scheme, which exploits the sparsity and
concentration characteristics of a natural object in the low-frequency
region of the Fourier domain and the framework of computational ghost
imaging. A hash ‘‘fingerprint’’ of the object is used for recognition by
comparing it with the ‘‘fingerprint’’ in the image library. To obtain the
hash ‘‘fingerprint,’’ we record the Fourier spectrum of the object by using
grayscale, analytic, harmonic four-step phase-shifting sinusoid patterns
for illumination [34–36], and a single-pixel detector that has no spatial
resolution, to collect the reflecting light. We obtain the hash value
directly in the Fourier domain and calculate the hash distance. Thus, the
imaging procedure is eliminated, and non-imaging object recognition is
realized. Our scheme is a compressive-sampling-like method that can
realize non-imaging object recognition with fewer measurements.

2. Theory

Fig. 1 presents a flowchart of the algorithm.
The process of preprocessing simplifies the object image color and

reduces the size to 𝑀 ∗ 𝑁 of the object image in the simulation.
The process of preprocessing obtains data in experiments. The PHA
calculates the hash value of the image in the Fourier domain. The real
part or the imaginary part of the Fourier coefficient of the image both
contain characteristic information about this image. In our experiment,
the real part or the imaginary part of the Fourier coefficient of the
image can be obtained directly by measurement; hence, we only need
to calculate the mean value of the real part or the imaginary part of the
Fourier coefficients. This not only obtains the characteristic information
of the image but also reduces the number of samplings and calculations.
Then, we can transform the Fourier coefficients into binary numbers by
using the mean value. Specifically, we assign a coefficient of 1 if it is
larger than the mean value; otherwise, we assign a coefficient of 0. The
0 or 1 sequence is the hash value of this image, which is referred as a
‘‘fingerprint.’’ We compare the difference of the ‘‘fingerprint’’ between
the object image and the ‘‘fingerprint’’ library. Then, we can obtain the
hash distance. To set a unified standard, we define the hash distance
(HD) to represent a hash value difference between the object image and
contrast images in the image library. It is given by

𝐷𝑜𝑏𝑗𝑐𝑜𝑛 =
1

𝑀 ∗ 𝑁

𝑀∗𝑁
∑

𝑖=1

|

|

𝑜𝑏𝑗𝑖 − 𝑐𝑜𝑛𝑖|| , (1)

Fig. 2. Schematic of non-imaging perceptual hashing object recognition. Digital projector
illuminates object image with four-step phase-shifting sinusoidal structured light patterns.
Detection unit (a photodiode) collects scattered reflected light from object and feeds
resulting signals to computer for a computational Fourier coefficient of images.

where 𝐷𝑜𝑏𝑗𝑐𝑜𝑛 is the hash distance between the object image and the
contrast image. 𝑜𝑏𝑗𝑖 represents the hash value of the object image.
𝑐𝑜𝑛𝑖 represents the hash value of the contrast images. We conduct
normalization processing in Eq. (1), regardless of whether 𝑀,𝑁 , or
𝐷𝑜𝑏𝑗𝑐𝑜𝑛 ranges from 0 to 1. 𝑜𝑏𝑗𝑖, 𝑐𝑜𝑛𝑖 is a binary sequence of 0 or
1. In general, the hash distance of the same images is 0. In most
cases, the experimental results are not perfect, or the object image is
slightly different. Thus, we need to find a suitable threshold through
the experimental results. If the hash distance between the object image
and a contrast image is less than or equal to this threshold, recognition
is successful. Otherwise, we continue to compare the ‘‘fingerprint’’ of an
object image with the ‘‘fingerprint’’ library until recognition succeeds.

An experimental diagram of the scheme is presented in Fig. 2. A
four-step phase-shifting sinusoidal light irradiates on the target object,
which is collected by a lens and detected by a single-pixel detection
unit.

The four-step phase-shifting sinusoidal patterns of different spatial
frequencies with 𝑀 ∗ 𝑁 pixels are generated by 𝑃0, 𝑃𝜋 , 𝑃𝜋∕2, 𝑃3𝜋∕2,
which are given by
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𝑁
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where 𝑙, 𝑚 ∈ {1, 2, 3,… ,𝑀} and 𝑘, 𝑛 ∈ {1, 2, 3,… , 𝑁}. In Eqs. (2)–
(5) [19], 𝑃0, 𝑃𝜋 , 𝑃𝜋∕2, 𝑃3𝜋∕2 has a constant phase shift 𝜋∕2 between
two adjacent patterns. Since the actual light intensity value is always
positive, 1 is added to Eqs. (2)–(5) [19] to ensure that the light intensity
is a positive value in theory. Therefore, the simulation process can also
be used in the experiment.

A 2D sinusoid pattern is specified with the spatial frequency (𝑓𝑥, 𝑓𝑦)
and initial phase 𝜃. Thus, Eqs. (2)–(5) can be written as [19]

𝑃𝜃(𝑥, 𝑦; 𝑓𝑥, 𝑓𝑦) = cos(2𝜋 ∗ 𝑓𝑥 ∗ 𝑥 + 2𝜋 ∗ 𝑓𝑦 ∗ 𝑦 + 𝜃) + 1, (6)

where (x, y) represents the 2D coordinates. When illuminating a scene
with a pattern, the total intensity of the reflected light arising from the
structured light source can be expressed as [19]

𝐷𝜃(𝑓𝑥, 𝑓𝑦) = ∬ Ω
𝑂(𝑥, 𝑦)𝑃𝜃(𝑥, 𝑦; 𝑓𝑥, 𝑓𝑦)𝑑𝑥𝑑𝑦, (7)

where Ω represents the illuminated area, and 𝑂(𝑥, 𝑦) is the distribution
of the surface reflectivity of the imaged objects. Each Fourier coefficient
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