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a b s t r a c t

We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a
wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed
on a glass substrate with the resolution of 65, 536 × 65, 536 pixels and a pixel pitch of 1 μm. The hologram
calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster
than conventional methods.

© 2017 Elsevier B.V. All rights reserved.

Holograms can be calculated by simulating a light wave emitted
from three-dimensional (3D) objects. The development of an ideal 3D
display can be expected when these holograms are displayed on a
spatial light modulator (SLM) [1]. Unfortunately, this 3D display has the
disadvantages that the size and viewing area of the 3D objects are small
and narrow. This has been a hindrance to their practical use; however,
in recent years, several techniques to address these issues have been
proposed. A common factor in these techniques is that to observe the 3D
objects with a wide viewing angle and large size by multiple observers,
it is necessary to calculate a hologram with a large number of pixels
and display it spatially [2–4] or temporally [5]. In other techniques,
hologram printers capable of printing large-scale holograms with minute
pixel pitch have been actively employed to reproduce 3D objects with a
wide viewing area and large size [6–10].

The hologram calculation time for reconstructing 3D objects with
wide viewing angles and large size is considerably lengthy. Various
fast hologram calculation methods have been proposed with procedures
of 3D object expression. In the case of 3D objects represented by
polygons, tilted diffraction calculation [11] can effectively compute a
hologram. A holographic stereogram [12–15] can be used when 3D
objects are expressed in multi-view images. In the case that 3D objects
are represented by an RGB-D image, a hologram calculation using
diffraction calculation of cross sectional images generated from the RGB-
D images has been proposed [16].

For 3D objects represented by point light sources, a hologram can
be calculated by adding light waves from each point light source on the
hologram plane. Many acceleration methods for the point light source
model have been proposed, such as an image hologram method [17],
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look-up table methods (LUT) [18,19], and wavefront recording plane
methods [20,21]. Recently, we proposed WAvelet ShrinkAge-Based
superpositIon (WASABI), a wavelet transform-based method [22,23].
This method superimposes light waves of point light sources in a
wavelet domain. However, although the WASABI method has shown
that hologram calculation can be efficiently performed using a small-
scale hologram of 2, 048 × 2, 048 pixels, thus far, the implementation of
large-scale hologram calculations has not been accomplished.

In this study, we generate a large-scale hologram calculation using
the WASABI method. An image-type hologram calculated using the
WASABI method is printed on a glass substrate. The resolution of the
hologram is 65, 536 × 65, 536 pixels with the pixel pitch of 1 μm. The
calculation time of the hologram is approximately 354 s on a commercial
CPU. The calculation is capable of a 30-factor acceleration compared to
conventional methods.

1. Large-scale hologram calculation using WASABI method

A hologram can be calculated by adding light waves emitted from
each object point on the hologram plane. The following equation is used
for the calculation:

𝑢(𝑥ℎ, 𝑦ℎ) =
𝑁
∑
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where 𝑖 =
√

−1, 𝑁 is the total number of the point light sources,
(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ) and 𝑎𝑗 are the coordinate and the amplitude of 𝑗th point
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Fig. 1. Calculation procedure of the WASABI method.

light source, respectively. (𝑥ℎ, 𝑦ℎ) and (𝑥𝑗 , 𝑦𝑗 ) are normalized by
the pixel pitch of the hologram, 𝑝. 𝑟ℎ𝑗 is calculated by 𝑟ℎ𝑗 =
√

𝑝2(𝑥ℎ − 𝑥𝑗 )2 + 𝑝2(𝑦ℎ − 𝑦𝑗 )2 + 𝑧2𝑗 . 𝑧𝑗 is quantized by a constant Δ𝑧. 𝜆 is
the wave length, 𝑟ℎ𝑗 is the distance between 𝑗th object point and (𝑥ℎ, 𝑦ℎ),
and 𝑢𝑧𝑗 is the point spread function (PSF) of a point located in (0, 0, 𝑧𝑗 ).
Although this calculation is simple, when the PSF is distributed over
the entire hologram, the calculation complexity is 𝑂(𝑁𝑁2

ℎ) where the
number of pixels of the hologram is 𝑁ℎ ×𝑁ℎ. Therefore, this accounts
for the greatest calculating cost among hologram calculations.

The WASABI method can reduce this computation amount via
applying the wavelet transform to the PSF and by superposing the PSFs
in the wavelet domain [22]. Fig. 1 shows the calculation steps of the
WASABI method. The calculation steps are explained as follows:

(1) Pre-computation: We pre-compute PSFs by 𝑢𝑧𝑗 = exp(𝑖𝑘𝑟ℎ𝑗 )

circ(
√

𝑥2ℎ + 𝑦
2
ℎ∕(2𝑊𝑗 )) where 𝑊𝑗 is the PSF radius of the 𝑗th

object point and circ(𝑐) = 1 when 𝑐 < 1, otherwise 0. The
depth coordinate of the pre-calculated PSFs is quantized by Δ𝑧 =
𝑧𝑗+1−𝑧𝑗 and the PSFs are converted to wavelet-domain PSFs using
fast wavelet transform (FWT). We select 𝑁𝛾 strong coefficients
among the wavelet-domain PSF and store them in the LUT. In
this study, 𝑁𝛾 is determined by 𝑁𝛾 = 𝜋(𝑊𝑗∕2)2𝛾 where 𝛾 is
the selectivity. If Δ𝑧 is not a constant, it is necessary to store
PSFs of any distances, which require a huge amount of memory.
Therefore, by setting Δ𝑧 as a constant, we can reduce the amount
of memory [19].

(2) Superposition: The superposition corresponding to Eq. (1) in the
wavelet domain is performed using the coefficients stored in the
LUT.

(3) Inverse transformation: The superposed result is converted to the
space domain using the inverse FWT.

As shown in Fig. 2(a), a wavelet-domain PSF is expressed by scaling
coefficients 𝑠(𝓁)𝑚,𝑛 and three wavelet coefficients 𝑤(𝓁)

𝐿𝐻,𝑚,𝑛, 𝑤
(𝓁)
𝐻𝐿,𝑚,𝑛 and

𝑤(𝓁)
𝐻𝐻,𝑚,𝑛, where 𝓁 denotes the level of FWT and the subscripts 𝐿 and

𝐻 denote low and high frequencies, respectively. Fig. 2(a) shows an
example of a wavelet-domain PSF at level 2. In this study, we used
coiflets, which are one of the discrete wavelet transforms, as the
wavelets at level 3. Coiflets have a more symmetrical shape compared

to Daubechies wavelets. We used a PSF with a wider spatial bandwidth
product than Ref. [22], so that the Daubechies wavelet of level 2 could
not express such a PSF well. We adopted FWT and IFWT with coiflets of
level 3 in consideration of the calculation time of a hologram and image
quality of a reconstructed image.

The superposition in the wavelet domain is performed by

𝜓(𝑚, 𝑛) =
𝑁
∑

𝑗=0
𝑎𝑗

𝑁𝛾−1
∑

𝑘=0
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where 𝜓(𝑚, 𝑛) is the superposition result of PSFs in the wavelet domain,
(𝑚, 𝑛) is the coordinate in the wavelet domain, 𝛿(𝑚, 𝑛) is the Dirac delta
function and 𝑐𝑧𝑗 ,𝑘 ∈ {𝑠(𝓁)𝑚,𝑛, 𝑤

(𝓁)
𝐿𝐻,𝑚,𝑛, 𝑤

(𝓁)
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(𝓁)
𝐻𝐻,𝑚,𝑛} is the 𝑁𝛾 strong

coefficients and 𝛼𝑧𝑗 ,𝑘 is the shift weight according to the level 𝓁 of the
FWT. Eq. (2) means that the amplitude of an object point is multiplied
by the wavelet coefficient of the PSF corresponding the object point, and
the result is superimposed on 𝜓(𝑚, 𝑛).

When calculating a large-scale hologram by the WASABI method,
we first divide an entire hologram into sub-holograms, as shown in
Fig. 2(b). This division can considerably reduce the memory usage of
a computer as compared with calculating the entire hologram at once.
Herein, the number of pixels of the entire hologram is 𝑁𝑤 × 𝑁𝑤, and
the number of pixels for each sub hologram is 𝑁ℎ × 𝑁ℎ. The index of
the sub holograms currently being calculated is represented by (𝑠, 𝑡). The
calculation performed is explained as follows:

(1) Pre-computation: As described above, PSFs for all depths are
converted to the wavelet domain via FWT. These PSFs 𝑢𝑧𝑗 (𝑥ℎ, 𝑦ℎ)
are calculated within the area |𝑥ℎ| < 𝑁ℎ∕2 and |𝑦ℎ| < 𝑁ℎ∕2. 𝑁𝛾
strong coefficients are stored in the LUT.

(2) Coordinate transformation of object points: The coefficients after
FWT are defined for sub-holograms (𝑁ℎ ×𝑁ℎ pixels), and not for
the entire hologram (𝑁𝑤 × 𝑁𝑤 pixels). Therefore, the positions
of all the object points are shifted relative to the current sub-
hologram (𝑠, 𝑡). Thus, the shift is given as 𝑥′𝑗 = 𝑥𝑗 − 𝑠𝑁ℎ and
𝑦′𝑗 = 𝑦𝑗 − 𝑡𝑁ℎ.

(3) Superposition: Using 𝑥′𝑗 and 𝑦′𝑗 instead of 𝑥𝑗 and 𝑦𝑗 in Eq. (2), the
superposition is performed by 𝜓(𝑚, 𝑛) = ∑𝑁

𝑗=0𝑎𝑗
∑𝑁𝛾−1
𝑘=0 𝑐𝑧𝑗 ,𝑘𝛿(𝑚 −
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