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a b s t r a c t

We propose a high-quality compressive ghost imaging method based on projected Landweber regularization
and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme,
the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a
minimization problem in compressive reconstruction process. The simulation and experimental results show that
our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

© 2017 Published by Elsevier B.V.

1. Introduction

Ghost imaging (GI) is a very important imaging technique based on
the correlation of the light field fluctuations, and it reconstructs the ob-
ject by means of intensity correlation of two light beams, i.e., the object
beam and the reference beam. The object beam contains information
of the object, and its total intensity is collected by a bucket detector.
The reference beam is detected by a detector with spatial resolution
directly. Recently, many researchers begin to pay close attention to
the practical application of GI [1–3], and try to improve the quality
of imaging in term of resolution and peak signal noise ratio (PSNR).
In order to improve the quality of ghost imaging, many methods have
been proposed, including higher-order GI [4], iterative GI [5](IGI),
normalized GI [6], compressive GI [7–10] and so on. Compared with
the traditional GI, these imaging technologies could obtain better image
quality but low PSNR due to the undersampling noise [11]. This kind of
noise is produced under finite sampling, which decreases the PSNR of
ghost imaging and masks the true information of the object.

In the recent few years, compressive ghost imaging (CGI) has
attracted more and more attention because of its high reconstruction
quality [12–14]. It restores the image based on compressive sensing
(CS), which has also been successfully applied in other fields [15,16]. CS
could reconstruct an image almost perfectly with only a few samples by
finding its sparsest representation [17–20]. The CGI [7] enables GI from
sub-Nyquist samples through exploiting the redundancy in the structure
of natural images and largely reduces the acquisition time and requisite
samples [8–10].
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It is well known that the CS problem is an ill-posed prob-
lem [17,18,21,22]. Thus, to obtain the reasonable image estimation, the
method of exploiting the geometrical structure of sparse/compressible
signals needs to be utilized. In this paper, we propose a high-quality
compressive ghost imaging method with decomposing regularization
and denoising steps in reconstruction framework instead of the con-
ventional compressive method of solving a minimization problem. In
practice, the undersampling noise always exists and cannot be neglected
due to the finite sampling number. In order to reduce the effect of
undersampling noise and improve the PSNR of reconstructed image, we
first utilize the projected Landweber regularization to solve the ill-posed
problem, and obtain initial reconstruction image, then, we apply the
edge-preserving filter to eliminate the undersampling noise.

2. The scheme of high-quality compressive ghost imaging

Our scheme schematic diagram is presented in Fig. 1. The goal of our
scheme is to remove the undersampling noise effectually and improve
PSNR in ghost imaging system (GIS). In order to obtain better recon-
structed results, the regularization and denoising steps are alternately
carried out in our scheme. The IGI [5] also applies the iterative operation
on the reconstructed image by adding more measurement pairs. It
obtains the recovered image by iteratively calculating the high-order
error term. Different from the IGI, our proposed method is a compressive
ghost imaging technique and the reconstructed image is obtained by
solving linear equations. We first obtain the random speckle matrix and
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Fig. 1. Schematic diagram of our scheme.

Fig. 2. Simulation results of ‘‘gong’’ with IGI, OMP and our methods with 𝑀 samples.

bucket values from GIS, then the projected Landweber regularization is
utilized to obtain initial reconstructed image, finally, the guided filter
is performed to eliminate the undersampling noise in the regularization
result. Our scheme procedures in detail in the following subsections.

The speckle field of the 𝑚th sample is recorded as 𝐼𝑚(𝑖, 𝑗). The indices
𝑖 = 1,… , 𝑟 and 𝑗 = 1,… , 𝑐 represent the horizontal and vertical pixel
coordinates, and 𝑚 = 1,… ,𝑀 is the sampling frame index and 𝑀 is
the total sampling number. Then, each of the speckle intensity 𝐼𝑚(𝑖, 𝑗)
is reshaped as a row vector 𝛹𝑚 of size 1 ×𝑁 , where 𝑁 = 𝑟 × 𝑐. After 𝑀
samples, we can get a 𝑀 × 𝑁 samples array recorded as 𝐴, and it can
be written as the following matrix
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Meanwhile, the object beam illuminates the object with transmission
coefficient 𝑇 (𝑖, 𝑗), and the speckle field transmitted by the object is
measured by the bucket detector. The 𝑚th sample result in bucket
detector is

𝐵𝑚 =
𝑟
∑

𝑖=1

𝑐
∑

𝑗=1
𝐼𝑚(𝑖, 𝑗)𝑇 (𝑖, 𝑗), (2)

Likewise, the 𝑀 results from the bucket detector can be arranged as
a 𝑀 × 1 column vector 𝑦, i.e., 𝑦 =

[

𝐵1, 𝐵2,… , 𝐵𝑀
]𝑇 . Then, if we denote

the unknown object image as an 𝑁 dimensional column vector 𝑥(𝑁 ×1),
we will have the framework:

𝑦 = 𝐴𝑥, (3)

Thus, we can reconstruct the image by solving a set of 𝑀 linear
equations (Eq. (3)) [7].

The CS predicts that the sparse signals can be reconstructed from a
small number of linear measurements using convex optimization. Alge-
braically, for reconstructing a sparse signal 𝑥 ∈ 𝑅𝑁×1 from the Eq. (3),
the CS method needs solving a convex optimization program, searching
for the image with a surprising small number of samples. Afterwards,
the classical signal reconstruction methods such as Orthogonal Matching
Pursuit (OMP) [21], Total Variation (TV) [14], Basis Pursuit De-Noising
(BPDN) [23] can be adopted to reconstruct 𝑥 from 𝐴 and 𝑦. If 𝑥 is not
sparse, the CS relies on the empirical observation that many types of
signals can be represented by 𝐾 ≪ 𝑁 significant coefficients over an
basis. The conventional CS reconstruction approaches formulated this
problem as one cost functional, and the objective function usually can
be written as

min ‖𝛷𝑥‖1 +
𝜆
2
‖𝐴𝑥 − 𝑦‖22, (4)

where 𝜆 is a nonnegative parameter, ‖𝑣‖2 denotes the 𝑙2-norm of 𝑣,
and ‖𝑣‖1 = 𝛴𝑖𝑣𝑖 is the 𝑙1-norm of 𝑣. The sparse transform 𝛷 is usually
exploited a set of fixed bases (e.g. discrete cosine transform and wavelet)
for the entirety of an image.

2.1. Regularization

It is generally known that the problem Eq. (3) is ill-posed due to the
singularity of 𝐴, and some special regularization methods are exploited
to solve it. The projected Landweber method [24] has good property for
solving Eq. (3) in the iterative methods, and we use it to approximate
the solution of Eq. (3). The basic idea is as follows [25]: let 𝑥0 be an
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