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a b s t r a c t

We investigate the Zeno dynamics of the optical rogue waves. Considering their usage in modeling rogue wave
dynamics, we analyze the Zeno dynamics of the Akhmediev breathers, Peregrine and Akhmediev–Peregrine
soliton solutions of the nonlinear Schrödinger equation. We show that frequent measurements of the wave inhibits
its movement in the observation domain for each of these solutions. We analyze the spectra of the rogue waves
under Zeno dynamics. We also analyze the effect of observation frequency on the rogue wave profile and on
the probability of lingering of the wave in the observation domain. Our results can find potential applications in
optics including nonlinear phenomena.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Rogue (freak) waves can be described as high amplitude waves
with a height bigger than 2–2.2 times the significant waveheight in a
wavefield. Their studies have become extensive in recent years [1–4].
The research has emerged with the investigation of one of the sim-
plest nonlinear models, which is the nonlinear Schrödinger equation
(NLSE) [1]. Discovery of the unexpected rogue wave solutions of the
NLSE resulted in seminal studies of rogue wave dynamics, such as
in Ref. [1]. Their existence is not necessarily restricted to optical
media [5], they can also be observed in hydrodynamics, Bose–Einstein
condensation, acoustics and finance, just to name a few [1,2]. It is
natural to expect that in a medium whose dynamics are described by
the NLSE and NLSE like equations, rogue waves can also emerge. In
this study we consider optical rogue waves for which analyzing the
dynamics, shapes and statistics of rogue wavy optical fields are crucially
important to satisfy certain power and communication constraints.

On the other hand, quantum Zeno dynamics [6,7], which is the
inhibition of the evolution of an unstable quantum state by appropriate
frequent observations during a time interval has attracted an intense
attention in quantum science, usually for protecting the quantum system
from decaying due to inevitable interactions with its environment. It
emerged that the observation alters the evolution of an atomic particle,
even can stop it [8–10]. Duan and Guo showed that the dissipation
of two particles can be prevented [11,12], Viola and Lloyd proposed
a dynamical suppression of decoherence of qubit systems [13], Manis-
calco et al. proposed a strategy to fight against the decoherence of the
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entanglement of two atoms in a lossy resonator [14], Nourmandipour
et al. studied Zeno and anti-Zeno effects on the entanglement dynamics
of dissipative qubits coupled to a common bath [15], and Bernu et al.
froze the coherent field growth in a cavity [16]. Very recently, Facchi
et al. studied the large-time limit of the quantum Zeno effect [17].

Quantum Zeno dynamics can also be used for realizing controlled
operations and creating entanglement. Creation of entanglement is a
major issue in quantum information science, requiring controlled oper-
ations such as CNOT gates between qubits, which is usually a demanding
task. As the number of qubits exceeds two, multipartite entanglement
emerges in inequivalent classes such as GHZ, W and cluster states, which
cannot be transformed into each other via local operations and classical
communications. The preparation of multipartite entangled states –
especially W states – require not only even more controlled operations
but also novel methods [18–22]. Wang et al. proposed a collective
threshold measurement scheme for creating bipartite entanglement,
avoiding the difficulty of applying CNOT gates or performing Bell mea-
surements [23], which can be extended to multipartite entangled states.
Chen et al. proposed to use Zeno dynamics for generation of W states
robust against decoherence and photon loss [24] and Barontini et al.
experimentally demonstrated the deterministic generation of W states
by quantum Zeno dynamics [25]. Nakazato et al. further showed that
purifying quantum systems is possible via Zeno-like measurements [26].

Optical analogue of the quantum Zeno effect has been receiving
an increasing attention. Yamane et al. reported Zeno effect in opti-
cal fibers [27]. Longhi proposed an optical lattice model including
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tunneling-coupled waveguides for the observation of the optical Zeno
effect [28]. Leung and Ralph proposed a distillation method for improv-
ing the fidelity of optical Zeno gates [29] Biagioni et al. experimentally
demonstrated the optical Zeno effect by scanning tunneling optical
microscopy [30]. Abdullaev et al. showed that it is possible to observe
the optical analog of not only linear but also nonlinear quantum Zeno
effects in a simple coupler and they further proposed a setup for
the experimental demonstration of these effects [31]. McCusker et al.
utilized quantum Zeno effect for the experimental demonstration of
the interaction-free all-optical switching [32]. Thapliyal et al. studied
quantum Zeno and anti-Zeno effects in nonlinear optical couplers [33].

In this paper we numerically investigate the optical analogue of
quantum Zeno dynamics of the rogue waves that are encountered in
optics. With this motivation, in the second section of this paper we
review the NLSE and the split-step Fourier method for its numerical
solution. We also review a procedure applied to wavefunction to model
the Zeno dynamics of an observed system. In the third section of this
paper, we analyze the Zeno dynamics of the Akhmediev breathers,
Peregrine and Akhmediev–Peregrine soliton solutions of the NLSE,
which are used as models to describe the rogue waves. We show that
frequent measurements of the wave inhibits the movement of the wave
in the observation domain for each of these types of rogue waves. We
also analyze the spectra of the rogue waves under Zeno dynamics and
discuss the effect of observation frequency on the rogue wave profile and
on the probability of lingering of the wave in the observation domain.
In the last section we conclude our work and summarize future research
tasks.

2. Nonlinear Schrödinger equation and Zeno effect

It was shown that all the features of linear quantum mechanics
can be reproduced by NLSE [34], and quantum NLSE can accurately
describe quantum optical solitons in photonic waveguides with Kerr
nonlinearity [35–38]. The bosonic matter wave field for weakly inter-
acting ultracold atoms in a Bose–Einstein condensate, evolves according
to quantum NLSE [39,40]. Many nonlinear phenomena observed in fiber
optics are generally studied in the frame of the NLSE [1]. Optical rogue
waves are one of those phenomena and rational rogue wave soliton
solutions of the NLSE are accepted as accurate optical rogue wave
models [1]. In order the analyze the Zeno dynamics of rogue waves,
we consider the nondimensional NLSE given as

𝑖𝜓𝑡 +
1
2
𝜓𝑥𝑥 + |𝜓|2𝜓 = 0, (1)

where 𝑥 and 𝑡 are the spatial and temporal variables, respectively, 𝑖 is
the imaginary number, and 𝜓 is the complex amplitude. It is known
that the NLSE given by Eq. (1) admits many different types of analytical
solutions. Some of these solutions are reviewed in the next section of
this paper. For arbitrary wave profiles, where the analytical solution is
unknown, the NLSE can be numerically solved by a split-step Fourier
method (SSFM), which is one of the most commonly used forms of
the spectral methods. Similar to other spectral methods, the spatial
derivatives are calculated using spectral techniques in SSFM. Some
applications of the spectral techniques can be seen in Refs. [41–56] and
their more comprehensive analysis can be seen in Refs. [57–60].

The temporal derivatives in the governing equations is calculated
using time integration schemes such as Adams–Bashforth and Runge–
Kutta, etc. [47,59,60]. However, SSFM uses an exponential time step-
ping function for this purpose. SSFM is based on the idea of splitting
the equation into two parts, namely the linear and the nonlinear parts.
Then time stepping is performed starting from the initial conditions. In
a possible splitting we take the first part of the NLSE as

𝑖𝜓𝑡 = −|𝜓|2𝜓 (2)

which can exactly be solved as

�̃�(𝑥, 𝑡0 + 𝛥𝑡) = 𝑒𝑖|𝜓(𝑥,𝑡0)|
2𝛥𝑡 𝜓0, (3)

where 𝛥𝑡 is the time step and 𝜓0 = 𝜓(𝑥, 𝑡0) is the initial condition. The
second part of the NLSE can be written as

𝑖𝜓𝑡 = −1
2
𝜓𝑥𝑥. (4)

Using a Fourier series expansion we obtain

𝜓(𝑥, 𝑡0 + 𝛥𝑡) = 𝐹−1
[

𝑒−𝑖𝑘
2∕2𝛥𝑡𝐹 [�̃�(𝑥, 𝑡0 + 𝛥𝑡)]

]

, (5)

where 𝑘 is the wavenumber [44,45]. Substituting Eq. (3) into Eq. (5),
the final form of the SSFM becomes

𝜓(𝑥, 𝑡0 + 𝛥𝑡) = 𝐹−1
[

𝑒−𝑖𝑘
2∕2𝛥𝑡𝐹 [𝑒𝑖|𝜓(𝑥,𝑡0)|

2𝛥𝑡 𝜓0]
]

. (6)

Starting from the initial conditions, the time integration of the NLSE can
be done by the SSFM. Two fast Fourier transform (FFT) operations per
time step are needed for this form of the SSFM. The time step is selected
as 𝛥𝑡 = 10−3, which does not cause a stability problem. The number
of spectral components are taken as 𝑀 = 2048 in order to use the FFT
routines efficiently.

Although it is known that the decay of an atomic particle can
be inhibited by Zeno dynamics, it remains an open question whether
the rogue waves in the quantized optical fields in the frame of the
NLSE can be stopped by Zeno dynamics. In this paper we analyze
the Zeno dynamics of such rogue waves by using the SSFM reviewed
above. Although analytical solution of the NLSE is known and used
as initial conditions in time stepping of SSFM, after a positive Zeno
measurement the wavefunction becomes complicated thus numerical so-
lution is needed. Recently a theoretical wavefunction formulation of the
quantum Zeno dynamics is proposed in Ref. [61], used in Refs. [62,63]
and experimentally tested in Ref. [64]. In this formulation, after a
positive measurement the particle is found in the observation domain
of [−𝐿,𝐿] with a wavefunction of 𝜓𝑇 (𝑥, 𝑡) = 𝜓(𝑥, 𝑡)rect(𝑥∕𝐿)∕

√

𝑃 where
𝑃 = ∫ 𝐿−𝐿 |𝜓 (𝑥, 𝑡)|2𝑑𝑥, and rect(𝑥∕𝐿) = 1 for −𝐿 ≤ 𝑥 ≤ 𝐿, and 0
elsewhere [61]. Between two successive positive measurements, the
wave evolves according to NLSE. This cycle can be summarized as

𝜓𝑇

(

𝑥,
(𝑛 − 1)𝑡
𝑁

)

𝑒𝑣𝑜𝑙𝑣𝑒
→ 𝜓

(

𝑥, 𝑛𝑡
𝑁

) 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
→

𝜓𝑇
(

𝑥, 𝑛𝑡
𝑁

)

= 𝜓
(

𝑥, 𝑛𝑡
𝑁

) rect(x/L)
√

𝑃 𝑛𝑁

(7)

where 𝑛 is the observation index, 𝑁 is the number of observations [61],
and

𝑃 𝑛𝑁 = ∫

𝐿

−𝐿

|

|

|

|

𝜓
(

𝑥, 𝑛𝑡
𝑁

)

|

|

|

|

2
𝑑𝑥. (8)

The cumulative probability of finding the wave in the observation
domain becomes [61]

𝑃𝑁 =
𝑁
∏

𝑛=1
𝑃 𝑛𝑁 . (9)

Using the momentum representation of the linear Schrödinger equation
and analogy of optical wave dynamics of Fabry–Perot resonator, an
analytical derivation of the lingering probability of an atomic particle
in the interval of [−𝐿,𝐿] after 𝑛th measurement is given as

𝑃 𝑛𝑁 ≈ 1 − 0.12
( 4
𝜋

)2( 2𝜋𝑡
𝑁

)3∕2
(10)

in [61]. After𝑁 measurements the cumulative probability of finding the
particle in the observation domain becomes

𝑃𝑁 ≈
(

1 − 0.12
( 4
𝜋

)2( 2𝜋𝑡
𝑁

)3∕2)𝑁

(11)

which can further be simplified using Newton’s binomial theorem [61].
The reader is referred to Ref. [61] for the details of the derivation of
these relations. We compare the analytical relations given in Eqs. (10)–
(11) with the numerical probability calculations in the next section of
this paper. By applying this procedure we show that the evolution of
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