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a b s t r a c t

In this paper, we shall demonstrate theoretically that steady bound electromagnetic eigenstate can arise in an
infinite homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-
part-of-wave-vector, which is partly attributed to that, here, nonzero-imaginary-part-of-wave-vector is not
involved with energy losses or gain. Altering value of real-part-of-impedance of the metamaterial, the bound
electromagnetic eigenstate may become to be a progressive wave. Our work may be useful to further understand
energy conversion and conservation properties of electromagnetic wave in the dispersive and absorptive medium
and provides a feasible route to stop, store and release electromagnetic wave (light) conveniently by using
metamaterial with near-zero-real-part-of-impedance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that, in a source-free infinite homogeneous linear
medium, time-harmonic electromagnetic fields will usually behavior as
a progressive wave [1]. Localized state of electromagnetic wave can
be achieved by applying disordered system [2], micro- or macro-optic
resonator [3], waveguide structure [4–7] and so on, which may be used
to slow or even stop light, and is believed to be an attractive technique
for enhanced nonlinear optics [5], light harvesting [6], and optical
(quantum) signal processing [7]. Nowadays the study of localized states
of electromagnetic wave has been attracted more attention [2–9].

Theoretically prediction [10] and experimental verification [11] of
negative refraction of electromagnetic waves at an interface formed
by left-handed material (LHM) and usual right-handed material (RHM)
arouse great interest in designing and realizing metamaterials with
unconventional values of electromagnetic parameters, discovering
novel electromagnetic phenomena and developing potential applica-
tions [8,9,12–15]. One of the most interesting applications of meta-
materials is used to stop and even store light by designing appropri-
ate hetero-structures [4–8]. Recently, it is predicted theoretically that
electromagnetic wave may stop steadily in an active medium with
zero-real-part-of-impedance, which corresponds to the case that the
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time-dependent Poynting vector (TDPV) shift forward and then turn
backward periodically [9]. However, there is a lack of detailed study
on characteristics of electromagnetic wave in the medium with near-
zero-real-part-of-impedance, and hence, there is no feasible way to be
provided to carry out the manipulation of electromagnetic wave capture,
storage and release.

In this work, based on eigenstate of source-free electromagnetic
wave equations, we shall address energy conversion and conservation
properties of electromagnetic wave in the dispersive and absorptive
medium, and demonstrate that steady bound electromagnetic eigen-
state can arise in a metamaterial with zero-real-part-of-impedance and
nonzero-imaginary-part-of-wave vector. Altering value of real-part-of-
impedance of the metamaterial, the bound electromagnetic eigenstate
may become to be either a forward or a backward progressive wave
depending on initial conditions and sign of real-part-of -impedance.
These results may provide a feasible route to stop electromagnetic wave
completely, store electromagnetic wave for a long time, and control
propagation direction of electromagnetic wave conveniently. The re-
mainder of the paper is organized as follows: In Section 2, theoretical
analyses are presented. In Section 3, the realizable experiments are
suggested to test the theories. Finally, some conclusions are drawn in
Section 4.
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2. Theoretical analyses

Let us begin by briefly reviewing some fundamental knowledge of
electromagnetic fields and waves, which is useful for us to clearly
demonstrate properties of electromagnetic eigenstate in a homoge-
neous isotropic linear medium with near-zero-real-part-of-impedance.
Choosing time dependence of 𝑒𝑖𝜔𝑡, the homogeneous isotropic linear
medium can be represented by a complex scalar relative permittivity
𝜀 = |𝜀𝑟|𝜀0 exp(−𝑖𝛼𝜀) = 𝜀′ − 𝑖𝜀′′ and permeability 𝜇 = |𝜇𝑟|𝜇0 exp(−𝑖𝛼𝜇) =
𝜇′ − 𝑖𝜇′′, respectively. Here, the complex valued parameters are marked
with superscript ‘‘∼’’. 𝛼𝜀(𝜇) is electric (magnetic) damping angle. For
passive media, both 𝛼𝜀 and 𝛼𝜇 are limited in the range of [0, 𝜋], and
for active media, at least one of the two damping angles of 𝛼𝜀 and
𝛼𝜇 will certainly fall in the range of (𝜋, 2𝜋) [9,16]. The source-free
electromagnetic wave equation is written as

∇2
⇀̃
𝐸 − 𝜀𝜇 𝜕2

⇀̃
𝐸

𝜕𝑡2
= 0. (1)

Where,
⇀̃
𝐸 is complex valued electric field intensity vector. It is a three-

dimensional form of the wave equation. Considering a uniform plane

wave characterized by a uniform
⇀̃
𝐸𝑥 (uniform magnitude and constant

phase) over the plane surfaces perpendicular to 𝑧, that is 𝜕2
⇀̃
𝐸∕𝜕𝑥2 = 0

and 𝜕2
⇀̃
𝐸∕𝜕𝑦2 = 0. Eq. (1) simplifies to

𝜕2𝐸𝑥

𝜕𝑧2
− 𝜀𝜇

𝜕2𝐸𝑥

𝜕𝑡2
= 0. (2)

The eigenstate of electromagnetic wave equation (2) takes the form:

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥,+(𝑧, 𝑡) + 𝐸𝑥,−(𝑧, 𝑡)
= 𝐸𝑥,+(𝑧0, 0)𝑒𝑖𝜔𝑡−𝑖�̃�(𝑧−𝑧0) + 𝐸𝑥,−(𝑧0, 0)𝑒𝑖𝜔𝑡+𝑖�̃�(𝑧−𝑧0).

(3)

Where, 𝐸𝑥,+(𝑧, 𝑡)(𝐸𝑥,−(𝑧, 𝑡)) usually refers to electromagnetic wave trav-
eling along the +𝑧 (−𝑧) direction, 𝐸𝑥,+(𝑧0, 0) and 𝐸𝑥,−(𝑧0, 0) are arbitrary
(and, in general, complex) constants that must be determined by initial
and/or boundary conditions, �̃� = 𝑘′ − 𝑖𝑘′′ = 𝜔

√

|𝜀𝜇|𝑒−𝑖𝛼𝑘 (𝛼𝑘 = 𝛼𝜀+𝛼𝜇
2 ) is

the complex valued wave number. Correspondingly, the magnetic field
can be given as

�̃�𝑦(𝑧, 𝑡) = �̃�𝑦,+(𝑧, 𝑡) + �̃�𝑦,−(𝑧, 𝑡) =
𝐸𝑥,+(𝑧, 𝑡)

𝜂
−

𝐸𝑥,−(𝑧, 𝑡)
𝜂

. (4)

Where, 𝜂 = 𝜂′ − 𝑖𝜂′′ =
√

|𝜇∕𝜀|𝑒−𝑖𝛼𝜂 (𝛼𝜂 = 𝛼𝜇−𝛼𝜀
2 ) is impedance of the

medium.
To address energy conversion and conservation properties of elec-

tromagnetic wave traveling in a medium, the Poynting theorem is
adopted [1,9]

⇀
𝐽 ⋅

⇀
𝐸 = −∇ ⋅ (

⇀
𝐸 ×

⇀
𝐻) − (

⇀
𝐸 ⋅

𝜕
⇀
𝐷
𝜕𝑡

+
⇀
𝐻 ⋅

𝜕
⇀
𝐵
𝜕𝑡

). (5)

Where,
⇀
𝐽 is electric current density,

⇀
𝐸 ≡ Re(

⇀̃
𝐸),

⇀
𝐵 ≡ Re(

⇀̃
𝐵),

⇀
𝐻 ≡ Re(

⇀̃
𝐻)

and
⇀
𝐷 ≡ Re(

⇀̃
𝐷) are real valued electric field intensity, magnetic flux

density, magnetic field intensity and electric flux density, respectively.
Assuming

⇀
𝐽 ⋅

⇀
𝐸 = 0, i.e., energy losses induced by electric current is

neglected.
⇀
𝑆 ≡

⇀
𝐸×

⇀
𝐻 is TDPV, 𝑊𝑒,𝑚 ≡ −(

⇀
𝐸 ⋅ 𝜕

⇀
𝐷
𝜕𝑡 +

⇀
𝐻 ⋅ 𝜕

⇀
𝐵
𝜕𝑡 ) can be taken as

part of time-rate of work done by Lorentz force [9] and relates to storied
and lossy energy densities [1,9]. According to Eqs. (3) and (4),

⇀
𝑆(𝑧, 𝑡)

and 𝑊𝑒,𝑚(𝑧, 𝑡) are, respectively, obtained as

⇀
𝑆(𝑧, 𝑡) =

𝐸2
𝑥,+(𝑧0, 0)𝑒

−2𝑘′′(𝑧−𝑧0)

2|𝜂|
[cos(2𝜔𝑡 − 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂) + cos 𝛼𝜂]𝑒𝑧

+
𝐸2
𝑥,−(𝑧0, 0)𝑒

2𝑘′′(𝑧−𝑧0)

2|𝜂|
[cos(2𝜔𝑡 + 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂) + cos 𝛼𝜂](−𝑒𝑧)

≡
⇀
𝑆+(𝑧, 𝑡) +

⇀
𝑆−(𝑧, 𝑡),

(6)

𝑊𝑒,𝑚(𝑧, 𝑡) = 𝜔|𝜀|𝐸2
𝑥,+(𝑧0, 0)𝑒

−2𝑘′′(𝑧−𝑧0)[ sin(2𝜔𝑡 − 2𝑘′(𝑧 − 𝑧0) − 𝛼𝜀)
− 0.5(sin 𝛼𝜀 + sin 𝛼𝜇)]
+𝜔|𝜀|𝐸2

𝑥,−(𝑧0, 0)𝑒
2𝑘′′(𝑧−𝑧0)[ sin(2𝜔𝑡 + 2𝑘′(𝑧 − 𝑧0) − 𝛼𝜀)

− 0.5(sin 𝛼𝜀 + sin 𝛼𝜇)]
≡ 𝑊+(𝑧, 𝑡) +𝑊−(𝑧, 𝑡).

(7)

The time-periodic terms in Eq. (7) indicate that energies are stored
and then released by turns, thus these terms relate to stored energies.
The time-independent terms in Eq. (7) correspond to energy losses
(sin 𝛼𝜀 + sin 𝛼𝜇 > 0) or gain (sin 𝛼𝜀 + sin 𝛼𝜇 < 0) [9]. On the other hand,
the divergence of TDPV can be derived from Eq. (6) as

∇ ⋅
⇀
𝑆(𝑧, 𝑡) = ∇ ⋅

⇀
𝑆+(𝑧, 𝑡) + ∇ ⋅

⇀
𝑆−(𝑧, 𝑡)

=
𝐸2
𝑥,+(𝑧0, 𝑡)𝑒

−2𝑘′′(𝑧−𝑧0)

2|𝜂|
[ − 2𝑘′′ cos(2𝜔𝑡 − 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂)

+2𝑘′ sin(2𝜔𝑡 − 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂) − 2𝑘′′ cos 𝛼𝜂]

+
𝐸2
𝑥,−(𝑧0, 𝑡)𝑒

2𝑘′′(𝑧−𝑧0)

2|𝜂|
[ − 2𝑘′′ cos(2𝜔𝑡 + 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂)

+2𝑘′ sin(2𝜔𝑡 + 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂) − 2𝑘′′ cos 𝛼𝜂].

(8)

Noting relations of cos 𝛼𝑘 sin(2𝜔𝑡−2𝑘′(𝑧−𝑧0)+𝛼𝜂)−sin 𝛼𝑘 cos(2𝜔𝑡−2𝑘′(𝑧−
𝑧0) + 𝛼𝜂) = sin(2𝜔𝑡 − 2𝑘′(𝑧 − 𝑧0) − 𝛼𝜀) and 2 cos 𝛼𝑘 cos 𝛼𝜂 = sin 𝛼𝜀 + sin 𝛼𝜇 ,

it is found from Eqs. (7) and (8) that there are ∇ ⋅
⇀
𝑆(𝑧, 𝑡) = 𝑊𝑒,𝑚(𝑧, 𝑡).

Apparently, the term of 𝑘′′ cos 𝛼𝜂 in Eq. (8) corresponds to the term of
sin 𝛼𝜀 + sin 𝛼𝜇 in Eq. (7), thus relates to energy losses (or gain). We shall
point out that, for the special case of cos 𝛼𝜂 = 0, there are sin 𝛼𝜀+sin 𝛼𝜇 =
2 cos 𝛼𝑘 cos 𝛼𝜂 = 0 certainly, clearly, here, nonzero 𝑘′′ is not involved
with energy losses or gain, i.e., nonzero 𝑘′′ is not certain to relate to energy
losses or gain. In addition, terms of 𝑘′′ cos(2𝜔𝑡 − 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂) and
𝑘′′ cos(2𝜔𝑡 + 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂), as like as 𝑘′ sin(2𝜔𝑡 − 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂)
and 𝑘′ sin(2𝜔𝑡 + 2𝑘′(𝑧 − 𝑧0) + 𝛼𝜂), relate to the stored energies, which
indicates that nonzero 𝑘′′ can affect distribution of stored energies, and
thus influence distribution of amplitudes of electric and magnetic fields.

Since direction of TDPV usually oscillate with time except for the
special cases of cos 𝛼𝜂 = ±1, we consider the time-averaged Poynting
vector (TAPV), which can be obtained from Eq. (6) as

⟨

⇀
𝑆(𝑧)⟩ =

𝐸2
𝑥,+(𝑧0, 0)𝑒

−2𝑘′′(𝑧−𝑧0)

2|𝜂|
cos 𝛼𝜂𝑒𝑧

+
𝐸2
𝑥,−(𝑧0, 0)𝑒

2𝑘′′(𝑧−𝑧0)

2|𝜂|
cos 𝛼𝜂(−𝑒𝑧)

≡ ⟨

⇀
𝑆+(𝑧)⟩ + ⟨

⇀
𝑆−(𝑧)⟩

. (9)

According to Eq. (6), phase difference 𝛼𝐸−𝐻 between 𝐸𝑥,+(𝑧, 𝑡) and
�̃�𝑦,+(𝑧, 𝑡) is 𝛼𝐸−𝐻 = 𝛼𝜂 , and phase difference 𝛼𝐸−𝐻 between 𝐸𝑥,−(𝑧, 𝑡)
and �̃�𝑦,−(𝑧, 𝑡) can be taken as 𝛼𝐸−𝐻 = ±𝜋 + 𝛼𝜂 . Combining Eq. (9), we
can say that TAPV direction depends on the sign of cos 𝛼𝐸−𝐻 , thus the
value of phase difference 𝛼𝐸−𝐻 can be used to determine TAPV direction
conveniently. Furthermore, inner product of TAPV and wave vector can
be derived as [17]

⟨

⇀
𝑆(𝑧)⟩ ⋅

⇀

𝑘′ = 1
2
Re(

√

𝜇∕𝜀)Re(𝜔
√

𝜇 𝜀)[𝑒−2𝑘′′(𝑧−𝑧0)|
𝐸𝑥,+(𝑧0, 0)

𝜂
|

2

+𝑒2𝑘
′′(𝑧−𝑧0)

|

𝐸𝑥,−(𝑧0, 0)
𝜂

|

2

]

∝ cos(
𝛼𝜇 − 𝛼𝜀

2
) cos(

𝛼𝜇 + 𝛼𝜀
2

).

(10)

Apparently, direction relation between TAPV and wave vector depends
on the sign of cos 𝛼𝜂 cos 𝛼𝑘. Furthermore, combining Eqs. (3) and (4),
change of amplitudes of electric and magnetic field intensities along
TAPV direction can be determined subsequently.

Effects of dispersion can be accounted by adopting the signal spec-
trum consisted of two discrete different frequencies [9,18], it has been
verified that the cross terms of both the Poynting vector and 𝑊𝑒,𝑚(𝑧, 𝑡) as-
sociated with different frequencies average to be zero [9,18]. Therefore,
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