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a b s t r a c t

We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving
and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite
correlations of any order, where the weights are proportional to the correlation order. The neural complexity,
originally introduced to characterize correlation patterns in classical neural networks, is here extended to the
quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Correlations, capturing statistical relations between measurements
performed at different times, or at different sites, take centre stage
in many disciplines, as they often unveil dynamical and structural
properties of complex systems. Yet, while bipartite correlations can
be assumed to be well understood both in the classical and quantum
scenarios, multipartite correlations are still somehow terra incognita,
due to the daunting number of degrees of freedom that are necessary
to describe systems of many particles [1]. We clarify that in this work
we mean by ‘‘correlations’’ all the statistical dependencies between two
or more physical systems. While correlation functions, e.g. covariances,
capture linear correlations between variables, we here consider correla-
tion measures to be more general descriptors of the information about
joint properties of composite systems. Correlation patterns, the amount
of correlations of different orders (tripartite, four-partite, and so on),
describe collective properties of many-body systems, as demonstrated
in recent theoretical works [2–6], and also verified experimentally [7].
Recently, we proposed a framework to describe genuine multipartite
correlations for quantum and classical systems, providing a method to
unambiguously compute correlations of order 2 ≤ 𝑘 ≤ 𝑁 in an 𝑁-
particle system [8]. As states encoding the same amount of information
can display very different correlation patterns, we introduced an index
to classify them, called weaving. Genuine multipartite correlations
express how a many-body system is different from the sum of its
parts independently investigated, while weaving captures how such
difference scales with the size of the considered parts.

In this Special Issue, after recalling their definitions, we provide
closed formulas of both genuine multipartite correlations and weaving,
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as measured by the von Neumann relative entropy, for the 𝑁-qubit
GHZ (Greenberger–Horne–Zeilinger) state mixed with white noise [9],
a configuration of high relevance for quantum information process-
ing [10]. For such states, we run a comparison between weaving and the
quantized neural complexity [11], a measure which has been employed
to characterize correlation patterns in neural networks.

2. Genuine multipartite correlations and weaving

Genuine multipartite correlations describe emerging joint properties
of many-body systems which are intrinsically irreducible to features of
the system parts. Specifically, given an 𝑁-partite (classical or quan-
tum) system, the correlations of order 𝑘 represent the information
which cannot be obtained from clusters of 𝑘 or less subsystems. In a
recent work, we propose a method to compute genuine multipartite
correlations (including classical and quantum contributions) of any
order [8]. An advantage of this approach is that the obtained measure
of correlations is relatively easy to compute. More important, it meets a
set of expected criteria of monotonicity under local operations. Let 𝜌𝑁
be the density matrix representing the state of an 𝑁-particle quantum
system 𝑁 . We define the correlations of order higher than 𝑘, 2 ≤
𝑘 ≤ 𝑁 − 1, as the information about the total system that is still
missing when one has full knowledge of a coarse grained partition
{𝑘1 ,𝑘2 ,… ,𝑘𝑚},

∑𝑚
𝑖=1𝑘𝑖 = 𝑁, 𝑘 = max{𝑘𝑖}, where 𝑘𝑖 is a cluster

of 𝑘𝑖 subsystems. From an information-theoretic viewpoint, this infor-
mation can be quantified by the distance of the total state to the set
of tensor products describing up to 𝑘-party clusters. Such set reads
𝑘 =

{

𝜎𝑁 =
⨂𝑚

𝑖=1𝜎𝑘𝑖 ; ∀𝑘𝑖 ∶
∑𝑚

𝑖=1𝑘𝑖 = 𝑁, 𝑘 = max{𝑘𝑖}
}

, where 𝜎𝑘𝑖 is
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the quantum state of a 𝑘𝑖-partite cluster. These sets form the hierarchy
1 ⊂ 2 ⊂ ⋯ ⊂ 𝑁−1 ⊂ 𝑁 , where 𝑁 is the whole Hilbert space of the
system. Let us clarify the framework with an example. For 𝑘 = 1, 𝑁 = 3,
the set 1 =

{

𝜎3 = 𝜎[1] ⊗ 𝜎[2] ⊗ 𝜎[3]
}

consists of all the single-particle
product states. For 𝑘 = 2, 2 = 1 ∪ 2, where 2 contains all the
products {𝜎2 ⊗𝜎1} obtained by permutations of the subsystems. Hence,
𝑘 is the set of product states with at least one 𝑘-partite forming cluster.
In particular, 𝜎2 is the joint state of two subsystems, e.g., [1,2] ([1] and
[2]). Generally, one has 𝑘 = 𝑘−1 ∪ 𝑘, where 𝑘 is the set of all the
possible states with at least one 𝑘-partite term. One can then quantify
multipartite correlations higher than 𝑘 as the geometric distance of the
given state to the set 𝑘. This usually implies a challenging optimization,
which is yet significantly simplified by employing the relative entropy
𝑆(𝜌 ∥ 𝜎) = −𝑆(𝜌)−Tr(𝜌 log 𝜎), being 𝑆(𝜌) = −Tr(𝜌 log 𝜌) the von Neumann
entropy. In this case, the closest product state to the global state is the
tensor product of its marginals [12,13]. As the von Neumann entropy
is subadditive, 𝑆(𝜌𝑖) + 𝑆(𝜌𝑗 ) ≥ 𝑆(𝜌𝑖𝑗 ),∀𝑖, 𝑗, for systems invariant under
subsystem permutations, the closest state is always 𝜎𝑁 =

(

⨂

⌊𝑁∕𝑘⌋
𝑖=1 𝜌𝑘

)

⊗

𝜌𝑁 mod 𝑘. Hence, the amount of correlations of order higher than 𝑘 is
given by

𝑆𝑘→𝑁 (𝜌𝑁 ) ∶= min
𝜎𝑁∈𝑘

𝑆(𝜌𝑁 ∥ 𝜎𝑁 ) =
𝑚
∑

𝑖=1
𝑆(𝜌𝑘𝑖 ) − 𝑆(𝜌𝑁 ) (1)

= ⌊𝑁∕𝑘⌋𝑆(𝜌𝑘) + (1 − 𝛿𝑁 mod 𝑘,0)𝑆(𝜌𝑁 mod 𝑘) − 𝑆(𝜌𝑁 ).

By construction, genuine 𝑘-partite correlations are then quantified by

𝑆𝑘(𝜌𝑁 ) ∶= 𝑆𝑘−1→𝑁 (𝜌𝑁 ) − 𝑆𝑘→𝑁 (𝜌𝑁 ). (2)

Note that the total correlations are given by the sum of the correla-
tions of any order, the multi-information 𝑆1→𝑁 (𝜌𝑁 ) =

∑𝑁
𝑘=2𝑆

𝑘(𝜌𝑁 ) =
∑𝑁

𝑖=1𝑆(𝜌[𝑖]) − 𝑆(𝜌𝑁 ), a non-negative multipartite generalization of the
mutual information. We proved that the measures defined in Eqs. (1),
(2), contrary to all the previous proposals (to the best of our knowledge),
satisfy a set of expected constraints [8]:

∙ Adding a disjoint 𝑛-partite system, cannot create correlations
of order higher than 𝑛, 𝑆𝑛→𝑁 (𝜌𝑁 ) ≥ 𝑆𝑛→𝑁+𝑛(𝜌𝑁+𝑛).

∙ Local (single sites) operations, represented by CPTP (completely
positive trace-preserving) maps 𝛱𝑖𝛷[𝑖], 𝛷[𝑖] = 𝐼1⊗⋯𝛷𝑖⊗⋯⊗𝐼𝑁 ,
cannot create correlations of any order 𝑘, and cannot increase the
amount of correlations higher than any order 𝑘, 𝑆𝑘(𝜌𝑁 ) = 0 ⇒
𝑆𝑘(𝛱𝑖𝛷[𝑖](𝜌𝑁 )) = 0,∀𝑘.

∙ Partial trace of 𝑛 subsystems cannot increase correlations of order
higher than 𝑘 < 𝑁 − 𝑛, 𝑆𝑘→𝑁 (𝜌𝑁 ) ≥ 𝑆𝑘→𝑁−𝑛(𝜌𝑁−𝑛).

∙ Distilling 𝑛 subsystems by fine graining [𝑖] → 𝑖′ = {[𝑖𝑗 ]}, 𝑗 =
1,… , 𝑛+ 1, cannot create correlations of order higher than 𝑘+ 𝑛,
for any 𝑘, 𝑆𝑘+𝑛→𝑁+𝑛(𝜌𝑁+𝑛) = 𝑆𝑘→𝑁 (𝜌𝑁 ) = 0.

∙ Total correlations are superadditive, 𝑆1→𝑁 (𝜌𝑁 ) ≥
∑𝑚

𝑖=1𝑆
1→𝑘𝑚

(𝜌𝑘𝑚 ).

While a consistent measure of genuine multipartite correlations is an im-
portant tool to investigate many-body systems, computing correlations
is insufficient to fully discriminate correlation patterns. In the quantum
scenario, it is well known that there exists an infinite amount of kinds of
multipartite entanglement, such that there is not LOCC (Local Operation
and Classical Communication) transformation which can convert a state
into another belonging to a different equivalence class (i.e., being
entangled in a different way) [14]. Also, the structure of classical
networks is not fully captured by measures of correlations [11,15,16].
Classifying without ambiguities multipartite systems is a challenging
problem. We proposed a potential solution to the issue by introducing
weaving, an index assigning different importance to correlations of
different order. The idea is to describe how the information missing
about the whole system scales when one studies clusters of increasing
size. The relative entropy measure of weaving is given by

𝑊𝑆 (𝜌𝑁 ) =
𝑁
∑

𝑘=2
𝜔𝑘𝑆

𝑘(𝜌𝑁 ) =
𝑁−1
∑

𝑘=1
𝛺𝑘𝑆

𝑘→𝑁 (𝜌𝑁 ), (3)

where 𝜔𝑘 =
∑𝑘−1

𝑖=1 𝛺𝑖, 𝛺𝑘 ∈ R+. The meaning of the weaving measure is
determined by the choice of weights. For instance, weaving equals total
correlations for 𝜔𝑘 = 1, ∀𝑘, while it yields genuine 𝑘-partite correlations
if 𝜔𝑙 = 𝛿𝑙𝑘, ∀𝑙. For any choice of the weights, weaving satisfies, by
construction, the properties of contractivity under local operations,
𝑊𝑆 (𝜌𝑁 ) ≥ 𝑊𝑆 (𝛱𝑖𝛷[𝑖](𝜌𝑁 )), and additivity, 𝑊𝑆 (⊗𝑖𝜌𝑖) =

∑

𝑖𝑊𝑆 (𝜌𝑖). We
also showed that, by choosing weights proportional to the correlation
order, the index is able to rank several classes of correlated classical
and quantum states, discriminating among multipartite states taking
the same value of total or 𝑁-partite correlations, also being sensitive
to the dimension of the subsystems. Hence, weaving appears as an
information-theoretic consistent alternative to the many complexity
measures appeared in literature [8]. For the sake of comparison, we
introduced a quantum version of the neural complexity [11], proposed
for classical variables,

𝐶(𝜌𝑁 ) ∶=
𝑁−1
∑

𝑘=1
𝑘∕𝑁𝐶 (𝑘), 𝐶 (𝑘) = 𝑆1→𝑁 (𝜌𝑁 ) −𝑁∕𝑘⟨𝑆1→𝑘(𝜌𝑘)⟩, (4)

where the average term is computed over the
(𝑁
𝑘

)

clusters of 𝑘 sub-
systems 𝑘. Note that each term 𝐶 (𝑘) measures how much the total
correlations on size 𝑘 clusters 𝑆1→𝑘(𝜌𝑘) deviate from linearly increasing
with the cluster size. Also, the term 𝐶 (1) measures the total correlations
in the global state, while 𝐶 (𝑁−1) is (1∕(𝑁 − 1) times) the quantum
excess entropy of the state [15]. The quantity originally aimed at
capturing peculiar properties of neural configurations of the visual
cortex. While an appealing, computationally friendly measure of the
rate of the correlation scaling, the neural complexity, as well as the
proposed alternative geometric variants [15–19], does not meet the
desirable information-theoretic constraints of contractivity under local
manipulation of the system, e.g. it can arbitrarily increase under adding
disjointed subsystems [8].

3. Comparative study of weaving and neural complexity

We compare the relative entropy of weaving and the quantum neural
complexity for mixtures of white-noise and the 𝑁-qubit GHZ state [9]:

𝜌GHZ𝑁 =
𝑝
2𝑁

𝐼2𝑁 + (1 − 𝑝)|GHZ𝑁 ⟩⟨GHZ𝑁 |, 𝑝 ∈ [0, 1], (5)

where 𝐼2𝑁 is the 2𝑁 × 2𝑁 identity matrix and |GHZ𝑁 ⟩ = (|0⟩⊗𝑁 +
|1⟩⊗𝑁 )∕

√

2. The state is highly symmetric, being invariant under subsys-
tem permutations. Discarding 𝑁 − 𝑘 subsystems via partial trace gives
𝜌GHZ𝑘 = Tr{𝑁−𝑘}𝜌GHZ𝑁 = 𝑝

2𝑘 𝐼2𝑘 +
(1−𝑝)
2 (|0⟩⟨0|⊗𝑘 + |1⟩⟨1|⊗𝑘). Thus, one has

𝑆𝑘→𝑁 (𝜌GHZ𝑁 ) = ⌊𝑁∕𝑘⌋𝑆(𝜌GHZ𝑘 ) + 𝑆(𝜌GHZ𝑁 mod 𝑘) − 𝑆(𝜌GHZ𝑁 ), (6)

𝑆(𝜌GHZ𝑘 ) = −2
(

𝑝
2𝑘

+
1 − 𝑝
2

)

log
(

𝑝
2𝑘

+
1 − 𝑝
2

)

−
(

2𝑘 − 2
) 𝑝
2𝑘

log
𝑝
2𝑘

,

𝑆(𝜌GHZ𝑁 ) = −
(

2𝑁 − 1
) 𝑝
2𝑁

log
𝑝
2𝑁

−
(

1 − 2𝑁 − 1
2𝑁

𝑝
)

× log
(

1 − 2𝑁 − 1
2𝑁

𝑝
)

,

𝐶 (𝑘)(𝜌GHZ𝑁 ) = 𝑁
𝑘
𝑆(𝜌GHZ𝑘 ) − 𝑆(𝜌GHZ𝑁 ).

We perform a numerical comparison between the terms 𝑆𝑘→𝑁 and
𝐶 (𝑘), by varying the number of particles 𝑁 , reported in Fig. 1. Although
𝑆𝑘→𝑁 and 𝐶 (𝑘) have quite similar behaviours, the plot manifests the
peculiar correlation structure of the GHZ state, which displays non-zero
correlations of order 𝑘 if only if ⌈𝑁∕(𝑘 − 1)⌉ ≠ ⌈𝑁∕𝑘⌉, as discussed in
Ref. [8], while the components of the neural complexity always take
different, non-vanishing values (see the insets for 𝑁 = 50). We then
compare the weaving measures 𝑊 1,2

𝑆 defined in Eq. (3), for two different
choices of the weights, 𝛺1

𝑘 = 1,∀𝑘,𝛺2
𝑘 = 𝑘∕𝑁 , respectively, and the

neural complexity defined in Eq. (4). We stress that complexity measures
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