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a b s t r a c t

This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding
methods used for point source Shack–Hartmann wavefront sensors. Four typical similarity functions have been
compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and
cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms,
such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal
search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection.
Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF
exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness
of fast search algorithms has been verified.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Shack–Hartmann wavefront sensors have been widely used in adap-
tive optics (AO) systems for wavefront detection [1–4]. Depending on
the target features, charge-coupled devices can obtain extended sub-
images or point source spots [3,5]. In both cases, the accuracy of
displacement estimation is crucial for improving the performance of
wavefront detection. As the centre of gravity (CoG) is invalid when
features spread across the whole sub-aperture, solar AO systems use
the correlation method. The absolute difference function (ADF) and
ADF square (ADF2) are recommended and typically adopted in solar
AO systems [6]. In this study, however, we concentrate on point
source wavefront detection under a low-light-level condition, which is
dominant for an AO system in applications for star observation and laser
communication. Although improved gravity-based methods have been
proposed, e.g. threshold CoG (TCoG), weighted CoG, intensity weighted
CoG, and iteratively weighted CoG, their performances highly depend
on the choice of threshold, weighting function, or number of recursive
calculations [7].

Correlation-based methods have a potential immunity to noise. Fur-
ther, Poyneer et al. [8,9] have provided the first results of point source
spots centroiding using a correlation method with the cross correlation
function (CCF). However, the principle of selecting a similarity function
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has been neglected. Therefore, we compare four typical similarity
functions using the Gaussian spot model in Section 2. Details about
Gaussian interpolation are presented in Section 3. It is seldom discussed
but has potential advantages for point source spots.

More importantly, we propose an effective approach to reduce
the computational costs of correlation-based methods by employing
block-matching fast search algorithms (Section 4). Block-matching is
widely used for motion estimation in fields like image registration [10]
and video coding [11]. Four typical fast search strategies have been
proposed successively: three-step search (TSS) [11], two-dimensional
logarithmic search (TDL) [10], cross search (CS) [12], and orthogonal
search (OS) [13]. By calculating less matching points, the pixel-level
offsets can be obtained much faster.

The paper is organised as follows. In Section 2, similarity functions
are analysed and compared in terms of computational costs and robust-
ness. In Section 3, we introduce the interpolation methods used in this
paper. In Section 4, the search procedures of four fast search algorithms
are explained. Further, in Section 5, we present a simulation to compare
the correlation-based methods and the TCoG method as well as the
performances of fast search algorithms. Finally, in Section 6, conclusions
are drawn.
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2. Analysis and comparison of similarity functions

2.1. Discrete sampling model

A Shack–Hartmann sensor splits the wavefront into an array of spots
by applying micro mirrors. Each spot represents the sampling of a
local wavefront. Its displacement is directly proportional to the local
gradient, which is used for wavefront reconstruction. Typically, sub-
pixel precision is required. However, this is not an easy task—especially
under low-light-level conditions because of the presences of photon
and readout noise. As a matched filter, correlation-based methods are
potentially more resistible to noise then compared with gravity-based
methods.

Correlation-based methods firstly calculate the similarity function
between a displaced and a reference image. Then, the methods seek the
pixel-level offset with the largest similarity value, i.e. the best matching
point (BMP). Sub-pixel displacement is typically obtained by an inter-
polation of BMP neighbours. There exist several candidate functions:
ADF, ADF2, square difference function (SDF), CCF, and normalised cross
correlation (NCC). They are defined as Eqs. (1)–(5):
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The functions ADF, ADF2, and SDF are difference functions, where
the negative signs in Eqs. (1)–(3) make it favourable to determine the
maximum of each function. The function R (m, n) is the reference, I (m,
n) = R (m + x0, n + y0) the obtained image with a displacement of (𝑥0,
y0), where 𝑥0 and 𝑦0 are fractions, while m and n are integers. Assuming
that the sizes of R and I are 𝑀×𝑀 and 𝑁×𝑁 pixels, respectively, all the
similarity or difference functions have the size (N − M + 1)(N − M + 1).
Meanwhile, the detectable displacement range is i, j ∈ [−w, w], where
w = (N − M)/2.

Table 1 shows the exact calculation costs of five similarity functions
for N = 16 and M = 8. Evidently, ADF is far more computationally
efficient than all the other functions because there is no multiplication.
Löfdahl [6] recommended to add a square operation after calculating
each similarity value (ADF2) as an enhancement of the ADF. Function
CCF has less computational costs compared with SDF and NCC.

2.2. Successive-function analysis

In order to study the impact of amplitude difference and equivalent
Gaussian width (EGW) difference, which are two main factors when
choosing a reference, we introduce a successive-function model. We use
R(x) as a reference curve and I(x) as a shifted curve. All equations use a
one-dimensional Gaussian function because a Gaussian spot is radially
symmetric.

2.2.1. Amplitude difference
The amplitudes of two Gaussian curves are defined as 𝐴R and 𝐴I to

study the impact of the amplitude difference. Meanwhile, they keep the
same EGW: 𝜎.

𝑅(𝑥) = 𝐴R exp(−𝑥2∕2𝜎2) (6)

𝐼(𝑥) = 𝐴I exp(−(𝑥 − 𝑥0)2∕2𝜎2) (7)

The successive expressions of the four similarity functions ADF,
ADF2, SDF, and CCF have been derived and are shown in Eqs. (8)–(11).
Fig. 1 shows the theoretical curves with and without amplitude differ-
ence. The 𝑥- and 𝑦-axes represent the successive displacement between
two curves and amplitude of the similarity functions, respectively.
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√
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From Fig. 1, we can see that ADF has a cone-shaped distribution near
the peak without amplitude difference (𝐴R = 𝐴I = 1). This implies that
an equiangular line fitting (ELF) [14] would be the best interpolation
method. Because ADF2 tends to follow a parabolic distribution, a
plausible choice would be a parabolic interpolation. The functions SDF
and CCF should use a Gaussian interpolation (more details can be found
in Section 3).

As the amplitude difference increases, a ‘‘flat region’’ near the peak
(highlighted in a rectangle) becomes dominant for ADF. A similar,
less evident effect happens to ADF2. The effect makes the sub-pixel-
acquiring process more challenging—especially, when the EGW is large
and discrete sampling is inevitable. The reason is that it might end up
with more than one local maximum, thereby making the interpolation
procedure void. Contrary to this, both SDF and CCF show Gaussian
curves with a large amplitude difference. Therefore, the normalisation
process in Eq. (5) is not very helpful. Further, it increases computational
costs significantly. A larger amplitude for reference is recommended
when using CCF.

2.2.2. EGW difference
To analyse the influence of EGW difference, 𝜎R and 𝜎I are defined as

the EGWs of two Gaussian curves, respectively, as shown in Eqs. (12)
and (13). Furthermore, the successive similarity functions are shown in
Eqs. (14)–(17).
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