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a b s t r a c t

Employing the integration technique within normal products of bosonic operators, we present normal product
representations of thermal-state superpositions and investigate their nonclassical features, such as quadrature
squeezing, sub-Poissonian distribution, and partial negativity of the Wigner function. We also analytically and
numerically investigate their evolution law and decoherence characteristics in an amplitude-decay model via
the variations of the probability distributions and the negative volumes of Wigner functions in phase space. The
results indicate that the evolution formulas of two thermal component states for amplitude decay can be viewed
as the same integral form as a displaced thermal state 𝜌(𝑉 , 𝑑), but governed by the combined action of photon
loss and thermal noise. In addition, the larger values of the displacement 𝑑 and noise 𝑉 lead to faster decoherence
for thermal-state superpositions.

© 2017 Published by Elsevier B.V.

1. Introduction

In quantum optics, coherent- and thermal-state superpositions are
regarded as the superpositions of the most classical states. They usually
always exhibit some strong nonclassical properties and have many
practical applications in quantum information processing, such as in
quantum superpositions and other relevant problems (e.g., nonclassi-
cality and decoherence, etc.) that are currently topics of intense interest
by physicists.

A superposition of coherent states that has been found to possess
prominent quantum properties is well-known, and several suggestions
have been proposed to generate such a coherent-state superposition and
quantum entanglement for quantum information processing using the
weak Kerr nonlinearity [1,2]. However, decoherence effects may be in-
evitable during the process of generating coherent-state superpositions
because of the presence of nonlinear Kerr media. Recently, a displaced
thermal state, which was defined as a pure coherent state |𝛼⟩ with
amplitude 𝛼 subjected to a Gaussian noise

P(𝑉 , 𝑑; 𝛼) = 2
𝜋(𝑉 − 1)

𝑒−
2|𝛼−𝑑|2
𝑉 −1 , (1)
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was introduced [3–5], and its explicit integral form is described as

𝜌(𝑉 , 𝑑) = ∫ 𝑑2𝛼P(𝑉 , 𝑑; 𝛼)|𝛼⟩⟨𝛼|, (2)

where 𝑉 is the thermal noise variance since the variance 𝑉 changes
with the temperature 𝑇 of the thermal field according to the relation
𝑒ℏ𝜔∕𝑇 = (𝑉 + 1)∕(𝑉 − 1), where 𝜔 is the frequency of thermal field, ℏ
is Planck’s constant, and 𝑑 is the displacement for the thermal field in
phase space. For such a mixed superposed state, Jeong and co-workers
have done a great deal of research and have obtained a series of high-
quality symbolized achievements [3–5]. For instance, in Ref. [3] the
transfer of nonclassicality from thermal-state superpositions to thermal
states at the high-temperature limit has been realized based on the
Wigner functions (WFs) for these superposed states. In Ref. [6], the
decoherence problem of thermal-state superpositions in the photon-loss
cavity (i.e., amplitude-decay mode) was studied and compared with that
of coherent-state superpositions via the time-evolution of the negative
minimum of the partial negative WF with the decoherence time-scales in
phase space. However, to our knowledge, the analytical and numerical
study of the probability distributions and the negative volumes of the
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WFs with the change of the parameters 𝑑 and 𝑉 has not been previously
reported. Moreover, the negative volume should be a better candidate
than the negative minimum of the partial negativity of the WF for
quantifying the nonclassicality of any non-classical state according to
the conclusions in Refs. [7–9].

Differing from the approaches of previous workers [3–6], in this
paper we will analytically and numerically investigate the nonclassi-
cality of thermal-state superpositions and their decoherence properties
for amplitude decay recurring to the probability distributions and the
negative volumes of the WFs with the parameters 𝑑 and 𝑉 . We present
normal product representations of thermal-state superpositions and use
it to derive some analytical results, which make for the numerical
study of their nonclassicality and WF distributions, via the integration
technique within normal products of operators. In addition, we derive
the time-evolution of thermal-state superpositions for amplitude decay
via the Kraus operator-sum representations of the density operators, and
study their decoherence features by numerically analyzing the time-
evolution WF.

2. Normal product representations of thermal-state superpositions

To analytically study a thermal-state superposition, we need to
convert the density operator 𝜌(𝑉 , 𝑑) in (2) into its normal product. Em-
ploying the integration technique within normal products of operators
[10–13] and the operator identity |0⟩⟨0| =∶ 𝑒−𝑎†𝑎 ∶ [14], as well as the
mathematical integral formula [15],

∫
𝑑2𝛼
𝜋

exp(−ℎ|𝛼|2 + 𝑠𝛼 + 𝑔𝛼∗) = 1
ℎ
exp

( 𝑠𝑔
ℎ

)

, (3)

to carry out the integration 𝜌(𝑉 , 𝑑), we have

𝜌(𝑉 , 𝑑) = 2𝑒−2|𝑑|2∕(𝑉 +1)

𝑉 + 1
∶ exp

[ 2
𝑉 + 1

(𝑑𝑎† + 𝑑∗𝑎 − 𝑎†𝑎)
]

∶, (4)

where the symbol ∶∶ represents normal ordering of the operators. Ac-
tually, such a state represents the intermediate Gaussian state between
a mixed thermal state 𝜌(𝑉 , 0) with noise 𝑉 and a pure coherent state
𝜌(1, 𝑑) with amplitude 𝑑. In another respect, 𝑉 → 1 leads to 𝑇 → 0,
which also tells us that 𝜌(𝑉 , 𝑑) can be considered a generalization of
pure coherent states to high-temperature thermal mixtures.

To generate a thermal-state superposition, one takes the displaced
thermal states 𝜌(𝑉 , 𝑑) for component states to interact with a superposi-
tion state (|0⟩1+|1⟩1)∕

√

2 (|0⟩ and |1⟩ being the ground and excited state,
respectively, of a two-level system) in the cross-Kerr nonlinear media
with nonlinear strength 𝜆 and the interaction Hamiltonian  = 𝜆𝑎†𝑎𝑏†𝑏
(𝑎†, 𝑏† represent the creation operators of modes 1 and 2). The output
states are obtained as follows [3]:

𝜌𝑜𝑢𝑡(𝑉 , 𝑑) = 1
2 ∫ 𝑑2𝛼P(𝑉 , 𝑑; 𝛼)

[

|0, 𝛼⟩⟨0, 𝛼| + |1, 𝛼𝑒𝑖𝜙⟩⟨0, 𝛼|

+ |0, 𝛼⟩⟨1, 𝛼𝑒𝑖𝜙| + |1, 𝛼𝑒𝑖𝜙⟩⟨1, 𝛼𝑒𝑖𝜙|
]

, (5)

where 𝜙 = 𝜆𝑡 is the phase angle related to the interaction time 𝑡. When
one measures mode 1 on a superposed state (|0⟩1 + |1⟩1)∕

√

2 and takes
𝜙 = 𝜋 in the remaining states by controlling the interaction time 𝑡, the
resultant states are just thermal-state superpositions with remarkable
nonclassical properties, which can be written in normalized form as

𝜌±(𝑉 , 𝑑) = [𝜌(𝑉 , 𝑑) + 𝜌(𝑉 ,−𝑑) ± 𝜎(𝑉 , 𝑑)], (6)

where  = (2 ± 2𝑒−2|𝑑|2∕𝑉 ∕𝑉 )−1 is the normalization factor and the
coherence term 𝜎(𝑉 , 𝑑) is given as 𝜎(𝑉 , 𝑑) = ∫ 𝑑2𝛼P(𝑉 , 𝑑; 𝛼)|𝛼⟩⟨−𝛼| +
𝐻.𝑐.. Likewise, we have

∫ 𝑑2𝛼P(𝑉 , 𝑑; 𝛼)|𝛼⟩⟨−𝛼|

= 2𝑒−2|𝑑|2∕(𝑉 +1)

𝑉 + 1
∶ exp

[ 2
𝑉 + 1

(𝑑𝑎† − 𝑑∗𝑎 − 𝑉 𝑎†𝑎)
]

∶

≡ 𝜌′(𝑉 , 𝑑) (7)

and 𝐻.𝑐. ≡ 𝜌′(𝑉 ,−𝑑). Note, however, that 𝜌±(𝑉 , 𝑑) becomes a classical
mixture of two local Gaussian states when 𝜎(𝑉 , 𝑑) = 0; thus we say
that the coherence term 𝜎(𝑉 , 𝑑) is fully responsible for the nonclassical
behaviors of thermal-state superpositions. Noting that the sum of two
normal ordered products still remains normal ordered, i.e., ∶ 𝑊 ∶ + ∶
𝑉 ∶=∶ 𝑊 + 𝑉 ∶, the normal product representations of thermal-state
superpositions 𝜌±(𝑉 , 𝑑) are thus

𝜌±(𝑉 , 𝑑) = 4𝑒−2|𝑑|2∕(𝑉 +1)

𝑉 + 1
∶
[

𝑒−
2𝑎†𝑎
𝑉 +1 cosh

2(𝑑∗𝑎 + 𝑑𝑎†)
𝑉 + 1

𝑒−
2𝑉 𝑎†𝑎
𝑉 +1 cosh

2(𝑑∗𝑎 − 𝑑𝑎†)
𝑉 + 1

]

∶ . (8)

For 𝑉 = 1, 𝜌±(𝑉 , 𝑑) reduces to a superposition of two pure coherent
states |±𝑑⟩, i.e., 𝜌±(1, 𝑑) ∝ |𝜙⟩⟨𝜙|, where |𝜙⟩ = |𝑑⟩± |−𝑑⟩. For a physical
realization, several important experiments have already demonstrated
an ideal coherent-state superposition 𝜌±(1, 𝑑) with small amplitude

𝑑 [16,17]. Whereas 𝑑 = 0, 𝜌±(𝑉 , 0) ∝ 𝑒𝑎
†𝑎 ln

(

𝑉 −1
𝑉 +1

)

± 𝑒𝑎
†𝑎 ln

(

1−𝑉
𝑉 +1

)

, a
superposed thermal field. Also, 𝜌±(𝑉 , 0) can be rewritten as

𝜌±(𝑉 , 0) ∝

⎧

⎪

⎨

⎪

⎩

[1 ± (−1)𝑎
†𝑎]𝑒𝑎

†𝑎 ln
(

𝑉 −1
𝑉 +1

)

, 𝑉 > 1

[(−1)𝑎
†𝑎 ± 1]𝑒𝑎

†𝑎 ln
(

1−𝑉
𝑉 +1

)

, 𝑉 < 1
, (9)

where (−1)𝑎†𝑎 is the parity operator, whose eigenvectors are number
states |𝑛⟩ with the corresponding eigenvalues (−1)𝑛. In addition, it
is worth pointing out that the normal product of 𝜌±(𝑉 , 𝑑) makes it
convenient to investigate nonclassical effects, WF distributions and
decoherence characteristics.

3. Observable nonclassical effects

In this section, we investigate two observable nonclassical effects,
quadrature squeezing and sub-Poissonian distribution, resulting from
the coherence term 𝜎(𝑉 , 𝑑).

Note that the squeezing of a quadrature operator 𝑋𝜃 = 𝑎𝑒−i𝜃 + 𝑎†𝑒i𝜃

is characterized by the normal ordering inequality ⟨∶ (△𝑋𝜃)2 ∶⟩ < 0.
Upon calculating the expectation value ⟨∶ (△𝑋𝜃)2 ∶⟩, one can define
the squeezing degree  as

 = −2||
|

⟨𝑎†2⟩ − ⟨𝑎†⟩2||
|

+ 2⟨𝑎†𝑎⟩ − 2|⟨𝑎†⟩|2, (10)

where  always holds for all angles 𝜃, and its value range [−1, 0) signifies
quadrature squeezing. Under the states 𝜌±(𝑉 , 𝑑), the expectation values
⟨𝑎†⟩ = 0, ⟨𝑎†2⟩ = 2𝑑2(𝑉 3±𝑒−2|𝑑|2∕𝑉 )∕𝑉 3, and ⟨𝑎†𝑎⟩ = {𝑉 3(2|𝑑|2+𝑉 −
1)∓[2|𝑑|2+𝑉 (𝑉 −1)]𝑒−2|𝑑|2∕𝑉 }∕𝑉 3; thus the degree of squeezing +(𝑉 , 𝑑)
of 𝜌+(𝑉 , 𝑑) is directly obtained from the results above, as shown in the
plot of +(𝑉 , 𝑑) as a function of 𝑑 (here and hereafter, 𝑑 is taken as real
without loss of generality) and 𝑉 in Fig. 1(a).

From Fig. 1(a), one can clearly see that the state 𝜌+(𝑉 , 𝑑) can exhibit
squeezing in a symmetric value region of 𝑑 in the vicinity of 𝑉 = 1,
and the symmetric range of 𝑑 becomes small with the increase of 𝑉 .
Especially, when 𝑑 = 0, 𝜌+(𝑉 , 𝑑) cannot show non-zero squeezing
for the vicinity of 𝑉 = 1 owing to 𝑆+(𝑉 , 𝑑) ⩾ 0. However, the state
𝜌−(𝑉 , 𝑑) never produces squeezing for any value of 𝑉 and 𝑑. In addition,
the squeezing degree +(𝑉 , 𝑑) increases and then decreases with 𝑑 for a
fixed value of 𝑉 , but 𝑆+(𝑉 , 𝑑) decreases with increasing 𝑉 for a given 𝑑.

Next, we investigate the sub-Poissonian features in order to char-
acterize the nonclassicality of 𝜌±(𝑉 , 𝑑) by using the Mandel’s 𝑄-factor
represented by 𝑄± = (⟨𝑎†2𝑎2⟩ − ⟨𝑎†𝑎⟩2)∕⟨𝑎†𝑎⟩, whose negative values
in the range [−1, 0) refer to the sub-Poissonian distribution of this state.
Noting the expectation values ⟨𝑎†𝑎⟩ and ⟨𝑎†2𝑎2⟩ = {𝑉 5[(2|𝑑|2+𝑉 −1)2−
2|𝑑|4]±[(2|𝑑|2+𝑉 2−𝑉 )2−2|𝑑|4]𝑒−2|𝑑|2∕𝑉 }∕𝑉 5, we find that the Mandel’s
factor 𝑄− can always take some negative values in the range [−1, 0) for
certain 𝑑 and 𝑉 , and the negativity of 𝑄− in this case increases and then
decreases with 𝑑, but always decreases with 𝑉 , as shown in Fig. 1(b).
However, 𝜌+(𝑉 , 𝑑) does not yield a sub-Poissonian distribution at all.
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