
Optics Communications 410 (2018) 130–141

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

X-ray simulations method for the large field of view
I.A. Schelokov a,b,*, M.V. Grigoriev a, M.V. Chukalina b,a, V.E. Asadchikov b

a Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow Region, Chernogolovka, Academician
Ossipyan str, 6, 142432, Russia
b Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii pr. 59, Moscow, 119333, Russia

a r t i c l e i n f o

Keywords:
X-ray optics
Ambiguity function
Talbot interferometry

a b s t r a c t

In the standard approach, X-ray simulation is usually limited to the step of spatial sampling to calculate the
convolution of integrals of the Fresnel type. Explicitly the sampling step is determined by the size of the last
Fresnel zone in the beam aperture. In other words, the spatial sampling is determined by the precision of integral
convolution calculations and is not connected with the space resolution of an optical scheme. In the developed
approach the convolution in the normal space is replaced by computations of the shear strain of ambiguity
function in the phase space. The spatial sampling is then determined by the space resolution of an optical scheme.
The sampling step can differ in various directions because of the source anisotropy. The approach was used to
simulate original images in the X-ray Talbot interferometry and showed that the simulation can be applied to
optimize the methods of postprocessing.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Simulation is a powerful instrument for scientific research in various
fields and solution of numerous engineering problems. In the X-ray
wave range, simulation has some specific features. On the one hand,
an extremely short wavelength enables studies of micro- and nanoscale
objects. On the other hand, a high penetration ability of X-rays is of
interest for diagnostics of macroobjects, e.g. medical radiographs or
weld seams on tubes. A question arises whether so much differing
interests can be combined in optical simulation, whether the Angstrom-
range wavelength can be involved in studies dealing with objects of
millimeter, centimeter, decimeter or even larger scales. Here we present
a method for X-ray simulations which can readily modify the numerical
scheme to meet the requirements of a given task.

Simulations of optical schemes with an incoherent radiation source
actually consist in calculating the following integral expression [1]
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where I (𝜉, 𝜂) is the intensity of a typical source point, K (𝜉, 𝜂; 𝑥det , 𝑦det) is
the transmission function of the optical scheme describing the radiation
propagation from this point to a given point in the detector plane. In the
case of an in-line scheme – source-object-detector – K (𝜉, 𝜂; 𝑥det , 𝑦det) is
simply the Kirchhoff–Fresnel integral and expression (1) takes the form
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where 𝑥𝑜, 𝑦𝑜 are the coordinates in the object plane S, 𝑟𝑠𝑜 and 𝑟𝑜𝑑
are the distances between the source – object and object – detector,
respectively, 𝜎 is the source plane and 𝛬 is an inclination factor which
is equal to 𝛬 = (𝑖∕2𝜆)
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≅ 𝑖∕𝜆 in the paraxial

approximation, t (𝑥𝑜, 𝑦𝑜) is the object transmission function,
→
𝑛 is the

vector of external normal, 𝑘 = 2𝜋∕𝜆 is the wave number (wave vector
modulus), and 𝜆 is the X-ray wavelength. For the paraxial approximation
the following expressions are valid
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where 𝑅1 and 𝑅2 are the distances between the source – object and
object – detector planes along the optical axis, respectively.

In the expression above the part describing the field amplitude
distribution in the incident radiation clearly stands out. It is this part
that allows the development of an algorithm to describe the transition
from plane to plane in a multicomponent system.

A direct or standard scheme of simulation or calculation of expres-
sions (1)–(3) includes

∙ a radiation source presented as an array of point sources
∙ wave-field distributions successively calculated in all planes for

each source point
∙ the resulting pattern is obtained by incoherent summation of the

contributions from all source points with a weighting factor equal
to the source intensity for a given point, i.e. the intensities of
calculated diffracted fields are summed.

The most significant point in such an approach is the step of spatial
sampling on which basis the expressions are calculated. It is this step that
determines the computational burden for a stated problem. The amount
of time taken is determined by the precision of calculating the Fresnel
type integral convolutions. Explicitly, this dependence is expressed in
terms of the size of the last Fresnel zone 𝛥𝑟𝑛, where n is the number
of Fresnel zones per the beam aperture A (see Discussion in [2]). The
number of partition points N should then be larger than

𝑁 ≥ 𝐴
𝛥𝑟𝑛

= 𝐴2

𝐹𝜆
(4)

so that no less than one point be per each sign-alternating (according to
the contribution to the integrand) Fresnel zones, where 1∕𝐹 = 1∕𝑅1 +
1∕𝑅2. Thus, the number of partition points increases with the square of
the beam aperture and is inversely proportional to the X-ray wavelength.
For example, the necessary number of partition points to consider the
problem of a 0.4 mm wide beam transition through the optical scheme
(F = 5 cm, 𝜆 = 1.54 Å) is 216–218 per the beam cross section for each
image coordinate.

Expression (4) might suggest, at the first sight, that the sampling
step is determined by the precision of convolution integral calculation
and does not depend on the spatial resolution 𝛿 of an optical scheme
(𝛿 = 𝜉𝑠⋅𝑅2∕𝑅1, where 𝜉𝑠 is the source size). In fact, this is not quite
correct. Let consider what really occurs in some detail.

When we represent a source as an array of point sources and study
an optical system response to its illumination with each of the point
sources, this means that we study an optical system under the condition
of diffraction limit of spatial resolution. This study requires a very
fine sampling with a maximally permissible step equal to the last
Fresnel zone size in the beam aperture. When averaged to the source
by incoherent summation of contributions of point sources resulting
from the partition, the spatial resolution is specially deteriorated to a
required value. To put it otherwise, to obtain a required result we seem
to intentionally deteriorate the resolution. In fact, within this approach
the spatial sampling is chosen such as if the stated problem is to be
solved for an optical system with the diffraction limit by resolution. As
a result, computational resources would suffice only to simulate small-
aperture schemes or small parts of a general scheme.

An alternative approach exists to describe optical systems. It is based
on the second-order correlation function termed mutual intensity. Its
basis is the Van Cittert–Zernike theorem which allows the calculation of
the mutual intensity of an incoherent source and the theorem of mutual

intensity propagation. Transform (2) to (Fig. 1)
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In the above expression, use is made of the fact that the product
of two integrals (or two infinite sums) gives a double integral on
the surface of an object S, where the points (𝑥𝑜1, 𝑦𝑜1) and (𝑥𝑜2, 𝑦𝑜2)
take on independently all positions on the surface S of integration.
Rewriting the expression for the function of mutual intensity in the
paraxial approximation gives the Van Cittert–Zernike theorem which
was just proved above. The inclusion of extra dimensionalities into the
expressions makes them cumbersome, therefore the formulae in the
text below will be given for a one-dimensional case. Generalization to
the 2D case is possible although not quite trivial. So, in the paraxial
approximation the 1D case is
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where 𝐼 denotes the Fourier transform of I (𝜉) and 𝐽𝑖𝑛 is incoming
mutual intensity from the source.

The theorem of mutual intensity propagation for an in-line set-up in
the paraxial approximation for the one-dimensional case states
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here 𝐽𝑜𝑢𝑡 denotes the outcoming mutual intensity from the object plane
and J and I are the mutual intensity and the intensity in the detector
plane, respectively.

This approach is widely used in theoretical analysis of optical sys-
tems [1,3,4] although its application to problems of optical simulation
is scarce. Even though the Fourier transformation substitutes for the
point-by-point partition of the source in the expressions, its ‘‘cost’’ is
addition of an extra dimensionality and, correspondingly, substitution
of a two-dimensional convolution by a four-dimensional with all the
drawbacks of the 2D one (i.e. squared growth of the number of partition
points, depending on the beam aperture for each integration variable).
This cost is too high. Nevertheless it is worth mentioning that this
approach supposes integration over the source at the very first step of
computation. In the 3rd Section of this paper we show the advantages
of this approach. Summing up, the Table 1 for comparison can be
proposed.
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