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a b s t r a c t

An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady
aerodynamic methodology is developed. Local piston theory (LPT) is integrated with
quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic
Arbitrary Body Program (SHABP) as a computationally inexpensive aerodynamic solver.
Structural analysis is performed using bilinear Mindlin–Reissner quadrilateral plate
elements. Strong coupling of the full-order system and linearization of the modal-order
system are implemented. The methodology is validated against published experimental
data in the literature and benchmarked against Euler computation in the Edge CFD code.
The flutter dynamic pressure is predicted to be within 10% of the experimental value for
140 times lower computational cost compared to CFD. Good agreement in other cases is
obtained with the industry-standard ZONA7 and ZONA7U codes.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of multiphysics phenomena such aeroelasticity in the preliminary design of aerospace components is
important in reducing the risk of the design not meeting requirements for structural integrity and safety. Typically, the
prohibitive computational cost of multidisciplinary analysis results in such studies only being conducted in the detailed
design phase. The reduction of the computational cost of aeroelastic prediction would allow for such analysis to be
conducted earlier in the design cycle, and would allow for better filtering of concepts in the design space.

Modeling of the multiphysics problem is most broadly done through the use of segregated solvers—the equations for the
structural dynamics and aerodynamic loading are solved separately. The exchange of data between the solvers is referred to
as coupling. Strong coupling of the solvers refers to the practice of performing multiple iterations of data exchange between
the solvers per time-step in the solution, in order to achieve dynamic equilibrium; weak coupling of the solvers disregards
this subiteration, and only one exchange of data between solvers is performed per time-step. Early work in computational
aeroelasticity (Rodden et al., 1962a,b) involved the use of monolithic solvers, in which the structural dynamics and
aerodynamics are computed simultaneously. This work was associated with matrix (panel) methods. The aerodynamic
models employed in such methods are typically applicable to both steady and unsteady flows. However, these aerodynamic
models may also be exploited in segregated aeroelastic solvers, with coupling to a finite-element structural model; an
example of this would be to use the Supersonic/Hypersonic Arbitrary Body Program (SHABP) code (Gentry et al., 1973)

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jfs

Journal of Fluids and Structures

http://dx.doi.org/10.1016/j.jfluidstructs.2015.06.018
0889-9746/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: mariuscmeijer@gmail.com (M.-C. Meijer), ldala1@csir.co.za (L. Dala).

Journal of Fluids and Structures 57 (2015) 196–205

www.sciencedirect.com/science/journal/08899746
www.elsevier.com/locate/jfs
http://dx.doi.org/10.1016/j.jfluidstructs.2015.06.018
http://dx.doi.org/10.1016/j.jfluidstructs.2015.06.018
http://dx.doi.org/10.1016/j.jfluidstructs.2015.06.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2015.06.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2015.06.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2015.06.018&domain=pdf
mailto:mariuscmeijer@gmail.com
mailto:ldala1@csir.co.za
http://dx.doi.org/10.1016/j.jfluidstructs.2015.06.018


(which is modular in the quasi-steady aerodynamic methods used) to provide the loading for a structural model derived
from the finite-element method (FEM).

The advantage offered by the use of the aforementioned approximate aerodynamic methods is the significantly lower
computational cost of the methods compared to high-fidelity aerodynamic analysis by computational fluid dynamics (CFD).
The use of computationally inexpensive approximate methods in computational aeroelasticity continues (Yurkovich, 2003)
alongside high-fidelity analysis involving the coupling of computational structural dynamics (CSD) and CFD solvers (Livne,
2003; McNamara and Friedmann, 2011). The ability of approximate methods to reproduce aerodynamic and aeroelastic
trends for significantly lower computational cost (compared to CSD-CFD solutions) renders them valuable in guiding higher-
fidelity analysis, and makes multidisciplinary design feasible in the preliminary design cycle.

To this end, the current work suggests a computationally inexpensive framework for flutter prediction through the use of
approximate aerodynamic modeling. The framework offers modularity in the quasi-steady aerodynamic methods employed,
using local piston theory to compute the unsteady aerodynamic contribution. This allows for consistent comparison of the
merits of various approximate quasi-steady models for flutter analysis. The purpose of the work is thus to provide the
designer with a method to rapidly model the aeroelastic response of a concept, in order to filter through the design space,
and to provide the guiding “zeroth-order” solution upon which increasingly higher-fidelity analysis improves.

2. Modeling methodology

2.1. Structural dynamics

2.1.1. Structural model
A structural solver was developed in MATLAB as a core component of the computational framework. A finite-element

structural model based on Mindlin-Reissner plate theory (Ferreira, 2009) was implemented for thin plates (t=cr0:1) of
trapezoidal planform. Bilinear quadrilateral plate elements with varying thickness were employed. The spanwise
discretization of the planform was in this study restricted to producing successive chordwise sections that were parallel
to the cantilevered root; no restriction was made on the chordwise discretization. The plate was modeled as having linear
isotropic material properties.

2.1.2. Aeroelastic system
Two methods were adopted in incorporating the loading on the structural model from the aerodynamic solver: a modal

representation with time-invariant linearized generalized aerodynamic forces (GAFs), and a strongly coupled full-
order model.

In the linearized system, a truncated modal representation of the structure was used in linearizing the GAFs from the
aerodynamic solver. The GAFs were computed once, about the trim condition, for small increments in modal displacements
and velocities. The aeroelastic system is described by the following equation:

I €qþDs _qþΩsq¼Da _qþΩaq ð1Þ
where I is the identity matrix, Ds is the modal structural damping matrix, Da is the aerodynamic damping matrix, Ωs is the
matrix of structural modal frequencies, Ωs is the matrix of aerodynamic modal frequencies, q are the generalized
coordinates, and dot notation denotes derivation with respect to time.

The resulting analysis resulted in a linear time-invariant aeroelastic system of truncated modal order. This allowed for
the direct extraction of aeroelastic eigenvalues and for inexpensive computation of the time-history of system response. The
aeroelastic modal parameters were used to calculate the Zimmerman–Weissenburger flutter margin as an indication of the
stability trends. The two-mode characteristic equation of a continuous-time system has the following form (Dimitriadis,
2001):

GðλÞ ¼ λ4þA1λ
3þA2λ

2þA3λþA4 ð2Þ
where GðλÞ is the characteristic polynomial of the continuous-time system and the λ are the eigenvalues of the system. The
associated Zimmerman–Weissenburger flutter margin FZ of the two modes is given (Dimitriadis, 2001) by

FZ ¼ A2
A1

A3

� �
� A1

A3

� �2

þA0 ð3Þ

The strongly coupled aeroelastic system saw the full-order structural model used to compute the aerodynamic loading.
Solution of the system response was obtained through direct integration of the full-order model, which is described by the
following equation:

M €xþC _xþKx¼ F ð4Þ
where M is the structural mass matrix, C is the structural damping matrix, K is the structural stiffness matrix, F is the
aerodynamic loading vector, and x is the displacement vector.
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