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a b s t r a c t

We propose a low-complexity and modulation-format-independent carrier phase estimation (CPE) scheme based
on two-stage modified blind phase search (MBPS) with linear approximation to compensate the phase noise
of arbitrary m-ary quadrature amplitude modulation (m-QAM) signals in elastic optical networks (EONs).
Comprehensive numerical simulations are carried out in the case that the highest possible modulation format
in EONs is 256-QAM. The simulation results not only verify its advantages of higher estimation accuracy and
modulation-format independence, i.e., universality, but also demonstrate that the implementation complexity
is significantly reduced by at least one-fourth in comparison with the traditional BPS scheme. In addition,
the proposed scheme shows similar laser linewidth tolerance with the traditional BPS scheme. The slightly
better OSNR performance of the scheme is also experimentally validated for PM-QPSK and PM-16QAM systems,
respectively. The coexistent advantages of low-complexity and modulation-format-independence could make the
proposed scheme an attractive candidate for flexible receiver-side DSP unit in EONs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The rapid developments of digital signal processing (DSP) during the
past decade have led to a global deployment of 100G/200G coherent
systems. Moving forward to next generation 400G/1T systems, further
reducing cost per bit and increasing network efficiency become the
most important research in DSP techniques. Specifically, due to the
dynamic, heterogeneous and unpredictable features of future internet
traffic, the higher-order polarization multiplexing m-ary quadrature
amplitude modulation (PM-mQAM) has been considered as a strong
candidate to build up elastic optical networks (EONs) with flexible
modulation formats (MFs), adaptive baud rate and variable transmission
distances. Therefore, the DSP design targets will include higher spectral
efficiency, improved tolerance to both linear and nonlinear noise, lower
power consumption, higher flexibility and intelligence, and so forth [1–
4]. In this case, to better support the ‘‘flexible’’ switch of MFs and line
rate, the conventional solutions are employing alternative algorithms
for different MFs, MF-recognition or MF-transparent algorithms [5].
However, MF-recognition or alternative algorithms are not beneficial
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to reduce the implementation complexity and lower the energy con-
sumption as well as minimize the scale of DSP units [6]. Therefore,
one of the pivotal components in EONs is the flexible DSP unit without
dependence on MFs. In addition, as the modulation order increases,
the phase information of the m-QAM signals dramatically impaired
by the phase noise induced by the transmitter laser and the local
oscillator (LO) due to the inherent shorter Euclidean distance, which
results in a significant decrease of tolerance toward laser phase noise.
Although narrow linewidth lasers could be utilized to maintain the
performance, it causes high cost. Therefore, the deployment of CPE
algorithm at receiver-side DSP units is most interested in the terms
of the implementation cost and complexity [7,8]. As a consequence,
another key design consideration for flexible DSP units is the low-
complexity linewidth-tolerant CPE scheme, since it impacts on both the
performance and the cost of the system.

To solve the two problems above, extensive studies of various
complexity-reducing and/or modulation-format-independent CPE al-
gorithms have been conducted [9–21]. For complexity-reducing CPE
algorithms, the most popular examples among them are quadrature
phase shift keying (QPSK) partitioning [14,15] and multi-stage blind
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phase search (BPS) [16–18]. QPSK partitioning schemes, with a lower
computational complexity and easy implementing, are improved from
the approach of classical Viterbi and Viterbi (V&V) [19] phase esti-
mation. However, such algorithms, having a relatively low complexity
but a stringent linewidth requirement, are not suitable for high order
m-QAM coherent system to achieve complete discrimination for CPE
due to the lack of sufficient dedicated symbols and specific amplitude.
On the contrary, although the multi-stage BPS algorithms have very
high linewidth tolerance and are applicable to a variety of MFs, they
come with an expense of huge computational complexity as it still adopt
fully blind search with fixed search step-size and require a considerable
number of test phases which involves rotation, MF dependent decision,
square and comparison in the complex plane. Moreover, the higher the
modulation order is, the more the number of test phases is required
to satisfy the estimation accuracy and the best linewidth tolerance. MF
independent CPE algorithms have also been investigated. A universal
phase-lock-loop based CPE was proposed in [20] but it comes with two
weaknesses: one is that the feedback loop leads to a tradeoff between the
linewidth tolerance and hardware speed, the other one is a convergence
process which may cause wrong phase estimation. Based on a multistage
phase error detection, a blind MF recognition method for CPE was
reported [21]. However, this method only reduces the computational
complexity of symbol decision process compared with the traditional
BPS (hereinafter referred to as BPS) algorithm, but does not consider
further reducing the number of test phases.

In this paper, we propose a low-complexity and modulation-format-
independent CPE scheme based on two-stage modified BPS with linear
approximation (LA-MBPS) to compensate the phase noise of arbitrary
m-QAM signals in EONs. Firstly, the operating principle of LA-MBPS
is elaborated in detail. What is more, the computation complexity,
phase tracking accuracy and optimum parameter are investigated by
numerical simulations. Compared with the traditional BPS scheme, the
proposed LA-MBPS scheme has the advantages of lowering complexity,
improving estimation accuracy and realizing independence to various
MFs. Similar laser linewidth tolerance, in comparison with the tradi-
tional BPS scheme, is also observed form the simulation results. Finally,
the slightly better OSNR performance of the scheme is experimentally
demonstrated for PM-QPSK and PM-16QAM systems, respectively. The
coexistent excellences make the proposed scheme a strong candidate for
flexible receiver-side DSP unit in EONs.

2. Principle of LA-MBPS scheme

2.1. Approximate linear relationship between phase compensation error and
corresponding error distance

It is well known that the BPS-based scheme can achieve nearly
optimal estimation accuracy and linewidth tolerance for arbitrary m-
QAM signals. However, these schemes have huge complexity since it
requires a mass of test phases and a decision unit to provide the reference
signal for Euclidean distance calculation. Thus, in the first place we focus
on replacing the decision operations with simple taking absolute value
operations.

Typically, quadrature imbalance, chromatic dispersion, timing error,
polarization impairments and frequency offset are compensated before
CPE, and the samples belong to the square or cross m-QAM constella-
tions (±𝑎 ± 𝑗 ⋅ 𝑏), 𝑎, 𝑏 ∈ {1, 3, 5, 7,…}, where 𝑚 (𝑚 = 2𝑛, 𝑛 = 2, 3, 4,…) is
the highest level among all possible MFs in EONs.

The received symbol-rate sample before the CPE in a typical digital
optical coherent receiver can be expressed as

𝑟 (𝑘) = 𝑠(𝑘)𝑒(𝑗𝜃𝑘+𝑗𝜙) + 𝑛(𝑘)𝑒𝑗𝜑𝑘 , (1)

where s (k)𝑒𝑗 𝜃𝑘 denotes the 𝑘th transmitted symbol drawn from a QAM
constellation, n(k)𝑒𝑗𝜑𝑘 stands for additive complex white Gaussian noise,
𝜙 represents the phase noise induced by laser linewidth which remains
unchanged within a proper time-window.

The received symbol-rate sample r(k) is rotated by test phase angles
𝜙𝑏 ,

𝑍 (𝑘, 𝑏) = 𝑟(𝑘) ⋅ 𝑒−𝑗𝜙𝑏 , (2)

Then, we obtain the in-phase part 𝑍𝐼 (𝑘, 𝑏) and quadrature parts
𝑍𝑄(𝑘, 𝑏) of the rotated sample Z (𝑘, 𝑏), respectively. 𝑍𝐼 (𝑘, 𝑏) and 𝑍𝑄(𝑘, 𝑏)
can be expressed as

𝑍𝐼 (𝑘, 𝑏) = 𝑠(𝑘) cos(𝜃𝑘 + 𝜙 − 𝜑𝑏) + 𝑛(𝑘) cos(𝜑𝑘 − 𝜑𝑏),
𝑍𝑄 (𝑘, 𝑏) = 𝑠(𝑘) sin(𝜃𝑘 + 𝜙 − 𝜑𝑏) + 𝑛(𝑘) sin(𝜑𝑘 − 𝜑𝑏).

(3)

As for the traditional BPS scheme, all rotated symbols are delivered
into a decision circuit. The squared distance to the closest ideal con-
stellation point is calculated at the complex plane. Different from the
above method, we directly send the in-phase and quadrature parts of
the rotated samples into a distance calculation module given by
{

𝑍𝐼 (𝑘, 𝑏, 𝑖) = 𝑎𝑏𝑠(𝑍𝐼 (𝑘, 𝑏, 𝑖 − 1)) − 2
𝑛+mod(𝑛,2)

2 −𝑖,

𝑍𝑄 (𝑘, 𝑏, 𝑖) = 𝑎𝑏𝑠(𝑍𝑄(𝑘, 𝑏, 𝑖 − 1)) − 2
𝑛+mod(𝑛,2)

2 −𝑖.
𝑖 = 1,… , 𝑐𝑒𝑖𝑙( 𝑛

2
)

⎧

⎪

⎨

⎪

⎩

𝑑𝐼 (𝑘, 𝑏) = 𝑎𝑏𝑠(𝑍𝐼 (𝑘, 𝑏, 𝑐𝑒𝑖𝑙(
𝑛
2
))),

𝑑𝑄 (𝑘, 𝑏) = 𝑎𝑏𝑠(𝑍𝑄(𝑘, 𝑏, 𝑐𝑒𝑖𝑙(
𝑛
2
))).

(4)

where mod(𝑛, 2) returns the modulus after division of 𝑛 by 2, ceil(𝑛∕2)
rounds the elements of 𝑛∕2 to the nearest integers greater than or
equal to 𝑛∕2, and abs (.) stands for taking absolute value. 𝑍𝐼 (𝑘, 𝑏, 0)
and 𝑍𝑄(𝑘, 𝑏, 0) are the in-phase part 𝑍𝐼 (𝑘, 𝑏) and the quadrature parts
𝑍𝑄(𝑘, 𝑏) of the rotated sample Z (𝑘, 𝑏) respectively, as expressed in Eq.
(3). 𝑑𝐼 (𝑘, 𝑏) and 𝑑𝑄(𝑘, 𝑏) represent the real and imaginary parts of the
final error distance.

In order to further elaborate the principle of Eq. (4), as illustrated in
Fig. 1, the signal constellation symmetrical folding processes are given
by taking ideal 256-QAM as an example. From the figure we can see that
the 256QAM signal is folded into the first quadrant by the first taking
absolute value operation of the real and imaginary parts. Then it can be
translated into a new 64QAM signal after the real and imaginary parts
all minus 8. Next, the 64QAM signal will be folded into the first quadrant
by the second taking absolute value operation and then translated into
a new 16QAM signal after the real and imaginary parts all minus 4. We
repeat the operations as above mentioned until it becomes QPSK. After
the fourth taking absolute value operation, QPSK signals will be folded
into the first quadrant as a point. Finally, we get the corresponding
error distance by the real and imaginary parts of the point subtracting 1,
respectively. It is worth noticing that the constellation folding processes
of other lower modulation formats are also summarized in the figure. In
addition, as not all 8QAM constellation points could overlap with other
square QAM signals, it is noteworthy that the folding mechanism here
can only be applied to rectangular or vertical 8QAM constellation with
points of (±a, ±𝑗 ⋅ 𝑏), 𝑎, 𝑏 ∈ {1, 3}.

Obviously, 𝑑𝐼 (𝑘, 𝑏) and 𝑑𝑄(𝑘, 𝑏), the real and imaginary parts of
the error distance between the rotated sample and the closest ideal
constellation point can be represented as

𝑑𝐼 (𝑘, 𝑏) = 𝑠(𝑘) cos(𝜃𝑘 + 𝜙 − 𝜑𝑏) + 𝑛(𝑘) cos(𝜑𝑘 − 𝜑𝑏) − 𝑠(𝑘) cos(𝜃𝑘),
𝑑𝑄 (𝑘, 𝑏) = 𝑠(𝑘) sin(𝜃𝑘 + 𝜙 − 𝜑𝑏) + 𝑛(𝑘) sin(𝜑𝑘 − 𝜑𝑏) − 𝑠(𝑘) sin(𝜃𝑘),

(5)

In order to smooth out the influences of additive white Gaussian
noise (AWGN) on error distances calculation, the error distances of L
consecutive received symbols rotated by the same test phase angle 𝜑𝑏
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