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a b s t r a c t

Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level
atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices.
Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external
parameters should be particularly important. In this paper, we discuss how such a modulation could be
implemented by periodically driving the energy splitting of the interacting atom and the atom–photon coupling
strength. By generalizing the well developed time-independent full quantum mechanical theory in real space
to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This
means that, with these modulations the photon has certain probabilities to transmit through the scattering atom
in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of
the single photon waveguide devices could be designed for the future optical quantum information processing
applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Single-photon propagation is one of the basic and important sub-
jects in quantum optics. It is related to the designs and fabrications
of various optical quantum devices for optical quantum information
processings [1–3]. Recently, many theoretical and experimental works
have been demonstrated to investigate the single-photon transport along
a one-dimension waveguide with aside one- and multi- atoms as the
scatters [4–9]. These investigations are directly related to various single-
photon quantum device applications to implement, e.g., the single-
photon routers, switches, and detectors, etc., [10–16], as well as quan-
tum communications and quantum information applications [17–21].
Note that, almost all these works are based on a time-independent
quantum theory, i.e., the Hamiltonians of the considered systems are
time independent, and thus can only describe the elastic scatterings of
the photons in the waveguide by the aside atom(s).

However, manipulatable single-photon devices are usually nec-
essary for many practical applications, such as the quantum Zeno
switches [22]. Therefore, the investigation of how to modulate the
transport of the photons along the waveguide-atom structures by con-
trolling certain external parameters should be meaningful. Physically,
these modulations can be applied to either the energy splitting(s) of the
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scattering atom(s) or the photon–atom interaction, or both of them. For
example, in a recent experiment [23] the famous dynamical Casimir
effect was verified by probing the sideband photons, generated by
the microwave propagating along a coplanar waveguide terminated
by a superconducting quantum interference device with fast changing
magnetic flux.

It is noted that the time-dependent transport problem is usually
encountered for the electron transport along the electronic waveguide in
mesoscopic physics, and the relevant theory [24–28], including the so-
called Floquet theory for periodic modulation [26–30], has been devel-
oped well by directly solving the time-dependent Schrödinger equation.
A typical deduction for this theory is, due to the inelastic scatterings
the electrons could be transmitted/reflected into the various energy
sidebands (with the zero-sideband describing the elastic scattering of
the electrons). As a consequence, the electronic transport could be
modulated, in principle, from one sideband to the others.

Similar to the time-dependent electronic waveguide transport the-
ory, in this paper we will develop a time-dependent single-photon
transport theory to describe the photons propagating in the optical
waveguides with certain time-modulations. Certainly, due to the present
inelastic scatterings, the photons can also be propagated in various
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Fig. 1. A single photon transporting along a one-dimension waveguide is scattered by
a two-level atom (at 𝑥0) with the energy splitting between |𝑔⟩ and |𝑒⟩ being periodically
modulated.

energy sidebands, and thus the total transmitted/reflected probability of
the photon should be the sum of the ones in all the possible sidebands.
Physically, the desired modulations could be achieved by adjusting the
atomic level-splittings or the atom–photon coupling strength. As a con-
sequence, the transport of the photons along the designed waveguides
can be controlled at a single-photon level.

The paper is organized as follows. In Section 2, we present our model
by considering a single waveguide photon scattered by a two-level atom
with the periodic modulating energy splitting. With such a modulation
we show that the photons could transmit through the atom in certain
energy sidebands. In Section 3, keeping the transition frequency of the
atom unchanged, we investigate how to control the transport of the
photon by using the periodically modulated photon–atom interaction.
In this case, we find that the transmission of the photon is mainly
along the 𝑛 ≠ 0 sideband (due to the inelastic scattering), and the
transmission in the zero-sideband (related to the elastic scattering) is
negligible. Finally, in Section 4 we summarize our work and discuss
the potential applications of the time-dependent single photon transport
theory developed here.

2. A single waveguide photon scattered by a two-level atom with
periodic modulated transition frequency

At the first, let us consider a simplest model, i.e., a single-photon
with the fixed frequency transporting along a one-dimension waveguide
and being scattered by an ideal two-level atom (i.e., without any atomic
decay), whose eigenfrequency is periodically modulated. The system is
sketched in Fig. 1, wherein the energy splitting between the ground state
|𝑔⟩ and the excited state |𝑒⟩ of the atom, locating at 𝑥0, is periodically
modulated. The Hamiltonian of the system can be written as (ℏ = 1) :

𝐻 = ∫ 𝑑𝑥
[

𝑐†𝑅(𝑥)(−𝑖𝑣𝑔
𝜕
𝜕𝑥

)𝑐𝑅(𝑥) + 𝑐
†
𝐿(𝑥)(𝑖𝑣𝑔

𝜕
𝜕𝑥

)𝑐𝐿(𝑥)
]

+∫ 𝑑𝑥𝑉 𝛿(𝑥 − 𝑥0)
[

𝑐𝑅(𝑥)𝜎+ + 𝑐𝐿(𝑥)𝜎+ +𝐻.𝑐.
]

+Ω(𝑡)𝜎+𝜎−. (1)

Here, 𝑐†𝑅(𝑥) (𝑐𝑅(𝑥)) and 𝑐†𝐿(𝑥) (𝑐𝐿(𝑥)) are the bosonic creation (an-
nihilation) operators of the single-photon propagating right and left
directions, respectively. 𝑣𝑔 is the group velocity of the photon, 𝑉 is
the coupling strength between the waveguide photon and the atom,
and 𝜎+(𝜎−) the atomic raising (lowering) ladder operator. The atomic
transition frequency Ω between the ground and excited states is now
periodically modulated, i.e., Ω(𝑡) = Ω[1 + 𝑓 cos(𝜔𝑡)] with 𝑓 ≪ 1 being
the modulated amplitude and 𝜔 the modulated frequency. The atom–
photon coupling strength 𝑉 is kept unchanged and the dissipations of
the system are neglected also for simplicity.

The generic solution to the time-dependent Schrödinger equation
with the Hamiltonian (1) can be expressed as

|Ψ⟩ = ∫ 𝑑𝑥
[

𝜙𝑅(𝑥, 𝑡)𝑐
†
𝑅(𝑥) + 𝜙𝐿(𝑥, 𝑡)𝑐

†
𝐿(𝑥)

]

|∅⟩

+ 𝑒(𝑡)𝜎+|∅⟩, (2)

with |∅⟩ being the vacuum state, i.e., without any photon in the
waveguide and the atom stays at its ground state |𝑔⟩, and 𝜙𝑅∕𝐿(𝑥, 𝑡)
and 𝑒(𝑡) standing for the time-dependent probabilistic amplitudes of the

photon propagating along the 𝑅∕𝐿 direction and the atomic excitation,
respectively. The time-dependent coefficients in the above wave func-
tion are determined by the following equations:

𝑖 𝜕
𝜕𝑡
𝜙𝑅(𝑥, 𝑡) = −𝑖𝑣𝑔

𝜕
𝜕𝑥
𝜙𝑅(𝑥, 𝑡) + 𝑉 𝛿(𝑥)𝑒(𝑡), (3)

𝑖 𝜕
𝜕𝑡
𝜙𝐿(𝑥, 𝑡) = 𝑖𝑣𝑔

𝜕
𝜕𝑥
𝜙𝐿(𝑥, 𝑡) + 𝑉 𝛿(𝑥)𝑒(𝑡) (4)

𝑖 𝜕
𝜕𝑡
𝑒(𝑡) = Ω [1 + 𝑓 cos(𝜔𝑡)] 𝑒(𝑡) + 𝑉

[

𝜙𝑅(0, 𝑡) + 𝜙𝐿(0, 𝑡)
]

. (5)

As the incident single-photon is now scattered by a time-dependent
atom and thus its energy should be no longer conservation. This implies
that the photon could be transmitted/reflected into the different energy
states, i.e., energy sidebands. The above probabilistic amplitudes of the
photon propagating along the 𝑅∕𝐿 direction could be taken generically
as

𝜙𝑅(𝑥, 𝑡) = 𝜃(−𝑥 + 𝑥0)𝑒𝑖(𝑞0𝑥−𝜔0𝑡) + 𝜃(𝑥 − 𝑥0)𝜓𝑅(𝑥, 𝑡), (6)

𝜙𝐿(𝑥, 𝑡) = 𝜃(−𝑥 + 𝑥0)𝜓𝐿(𝑥, 𝑡), (7)

where 𝜓𝑅(𝑥, 𝑡) and 𝜓𝐿(𝑥, 𝑡) stand for the transmitted and reflected parts
of the scattered photon, respectively. Also, 𝜔0 is the frequency of the
incident photon with the wave vector 𝑞0 = 𝜔0∕𝑣𝑔 .

Without loss of the generality, we take 𝑥0 = 0 for simplicity. By
substituting Eqs. (6) and (7) into Eqs. (3) and (4), we have

𝜓𝑅(0, 𝑡) = 𝜓𝐿(0, 𝑡) + 𝑒−𝑖𝜔0𝑡, (8)

𝑉 𝑒(𝑡) = 𝑖𝑣𝑔𝜓𝐿(0, 𝑡). (9)

Furthermore, with Eq. (5) we get

𝜕
𝜕𝑡
𝑒(𝑡) = −𝑖Ω [1 + 𝑓 cos(𝜔𝑡)] 𝑒(𝑡) − 𝑉 2

𝑣𝑔
𝑒(𝑡) − 𝑖𝑉 𝑒−𝑖𝜔0𝑡. (10)

A particular solution to the homogeneous differential equation on 𝑒(𝑡)
reads

𝑒(𝑡) = 𝑒
−𝑖Ω𝑡− 𝑉 2

𝑣𝑔
𝑡
𝑒−𝑖

𝑓Ω
𝜔 sin(𝜔𝑡). (11)

By using the Jacobi–Anger expansion [31]

𝑒𝑖𝑢 sin 𝑥 =
∑

𝑛
𝐽𝑛(𝑢)𝑒𝑖𝑛𝑥, (12)

with 𝐽𝑛(𝑢) being the first kind Bessel function of the 𝑛-order, the generic
solution to the Eq. (10) reads

𝑒(𝑡) =
∑

𝑛,𝑙

𝑉 𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
𝑒−𝑖𝜔𝑛𝑡, (13)

with Δ = 𝜔0 − Ω, 𝛾 = 𝑉 2∕𝑣𝑔 and 𝜔𝑛 = 𝜔0 + 𝑛𝜔. Here, Δ and 𝛾 are the
detuning and the effective coupling strength between the photon and
the periodically-modulated atom, respectively. As a consequence,

𝜓𝐿(𝑥, 𝑡) =
∑

𝑛
𝑒−𝑖(𝑞𝑛𝑥+𝜔𝑛𝑡)

⎡

⎢

⎢

⎣

∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾

⎤

⎥

⎥

⎦

, (14)

𝜓𝑅(𝑥, 𝑡) =
∑

𝑛
𝑒𝑖(𝑞𝑛𝑥−𝜔𝑛𝑡)

⎡

⎢

⎢

⎣

∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
+ 𝛿𝑛,0

⎤

⎥

⎥

⎦

, (15)

with 𝑞𝑛 = 𝜔𝑛∕𝑣𝑔 . It is seen that many energy sidebands appear in
the reflected and transmitted coefficients of the scattered photon. With
Eqs. (6) and (7) one can easily see that the quantities defined in
the square brackets in Eqs. (14) and (15) are just the reflected and
transmitted amplitudes in the 𝑛th sideband, i.e.,

𝑟𝑛 =
∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
, (16)

𝑡𝑛 =
∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
+ 𝛿𝑛,0. (17)

306



Download English Version:

https://daneshyari.com/en/article/7926478

Download Persian Version:

https://daneshyari.com/article/7926478

Daneshyari.com

https://daneshyari.com/en/article/7926478
https://daneshyari.com/article/7926478
https://daneshyari.com

