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Real-time adaptive optics is a technology for enhancing the resolution of ground-based optical telescopes
and overcoming the disturbance of atmospheric turbulence. The performance of the system is limited by
delay errors induced by the servo system and photoelectrons noise of wavefront sensor. In order to cut
these delay errors, this paper proposes a novel model to forecast the future control voltages of the de-
formable mirror. The predictive model is constructed by a multi-layered back propagation network with
Bayesian regularization (BRBP). For the purpose of parallel computation and less disturbance, we adopt a
number of sub-BP neural networks to substitute the whole network. The Bayesian regularized network
assigns a probability to the network weights, allowing the network to automatically and optimally pe-
nalize excessively complex models. The simulation results show that the BRBP introduces smaller mean
absolute percentage error (MAPE) and mean square errors (MSE) than other typical algorithms. Mean-
while, real data analysis results show that the BRBP model has strong generalization capability and

parallelism.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive optics (AO) [1] is an indispensable technology in large
telescopes to improve image quality, degraded due to atmospheric
disturbances. The major components involved in a simple AO
system are deformable mirrors (DM) inserted in the telescope's
optical path and measurements provided by a wavefront sensor
(WFS), as well as a control algorithm. WFS measures the error in
fitting the DM to the atmospheric distortions in the pupil plane. In
the past 20 years, kinds of AO systems have been used to correct
distorted wavefront in many domains, especially astronomical
observation. An AO system can be regarded as a real-time servo
system [2,3]. From detection to correction, there is usually a fixed
delay time of 2-3 cycles. The delay time is caused by wavefront
sensor, reconstruction calculation, control algorithm [4] and so on.
Error caused by delay time is a key cause on how the AO system
performs.

Atmospheric turbulence through a telescope or a Hartmann
sensor (HS) is a nonstationary Gauss stochastic process [5]. In
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particular, an advanced wavefront controller based on forecasting
technology can help reduce the servo-lag (residual atmosphere)
error. Several groups have addressed these problems, and have
begun to do experimental work at the telescope. In addition, it has
shown that the characteristic of the phase difference between two
points is a chaotic function of time, thereby suiting to short-term
prediction. Some numerical simulations in which the effect of the
delay in the servo loop is reduced by using history data vector
from the wavefront sensor to predict the value of the vector
sometime in the future, when the phase correction is actually
applied to the DM. Jorgenson and Aitken [6] predicted the wave-
front slope by using the back propagation network (BP) and Wild
[7] did it by using the recursive least square (RLS).

Empirical results suggested that the probabilistic neural net-
work (classification model) outperforms the standard BP neural
network (level estimation model) in predicting time-delay sys-
tems. However, there are still some drawbacks [8] in the classical
model: slow training convergence, easy to fall into local optimum,
etc. To address the potential overfitting of neural network weights,
some researchers have developed hybrid neural network techni-
ques [9,10]. The results of their study showed significant im-
provement over other standard models, while Bayesian regular-
ization [11-13] can overcome these shortcomings and improve the
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generalization capability of network.

In this paper, the BP neural network coupled with Bayesian
regularization (BRBP) is introduced as a novel hybrid model to
forecast DM voltages. Meanwhile, in order to further improve the
performance of the BRBP method, we also make it work in parallel
mode [14], according to the prediction process. The performance
of the BRBP is tested by two different AO systems and compared to
other advanced hybrid models, such as the steepest descent al-
gorithm BP neural network (SDBP), the BFGS quasi-Newton
method BP neural network (BFGBP) and the Levenberg—Marquardt
method BP neural network (LMBP). Simulation results show that
the BRBP offers an enhanced level of performance, and the BRBP
can promote AO system performance.

2. Principle of DM voltage forecasting

The concept of Taylor frozen flow is a good approximation on
short time scales (t<z, where 7 is the atmospheric coherence time)
for simulation single layer atmospheric turbulence. With the as-
sumption of frozen flow, wind from some preferred directions will
blow a static wavefront of aberration across the telescope aper-
ture. Although it is within the decorrelation time, this would in-
troduce significant inaccuracy in the wavefront correction process.
A possible partial solution to this problem is to progressively
predict wavefronts arriving after a delay time equivalent to the
servo time lag. Prediction technique in an AO system consists of
two main types: gradient-based and voltage-based.

According to Taylor's hypothesis [15] of atmospheric turbu-
lence, we know that the relative spatial structure of atmospheric
turbulence remains unchanged in a short time. At this moment,
the change of the turbulence is caused by the transverse wind.
And this information can be directly reflected in the gradients of a
certain subaperture and its neighboring subapertures. In such a
case, it makes much sense to predict the gradient based on the
earlier gradients over the subaperture of interest and the neigh-
boring subapertures. In an AO system which adopts the gradient-
direct reconstruction algorithm, there is a direct linear relation
between gradients and voltages:

V=RJG e}

where R;'y is the transfer matrix and G represents the gradient.
Considering the linear relation, the control voltage of DM can also
be used in prediction.

An adaptive optics system with a prediction controller is shown
in Fig. 1. The system includes a Shack-Hartmann sensor (HS) that
measures the gradient signal, a wavefront controller (CC) based on
proportion integration (PI) method that produces control voltages
for driving the DM, a prediction controller (P) based on BRBP that
generates prediction voltages for improving the performance of
the system and the DM used for generating surface shape. The
reconstruction voltages are obtained by the gradient-direct
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Fig. 1. Block diagram of AO closed-loop predictive control system based on the
BRBP.

method. Wavefront controller and prediction controller are used
to transform the reconstruction voltage to the control voltage
loaded on the DM. Due to the existing 2-3 cycles delay time, the
prediction controller can use history voltages belonging to the
actuator and actuators around it to get a next certain voltage. The
frames of history voltages that give the best predictability of the
near future is one cause that needs optimization in DM voltage
prediction.

3. DM voltage forecasting based on BRBP

The linear prediction method is usually used to predict DM
voltages in stationary situation. But it is not suitable for a non-
stationary state, especially when the speed of transverse wind is
very high. When in a non-stationary state, it is difficult to give a
definite evaluation and find a concrete function expression. A
major issue for these prediction techniques is the potential of
overfitting and overtraining. To eliminate the potential for over-
fitting, a mathematical technique known as Bayesian regulariza-
tion was developed.

3.1. Linear forecasting method

The RLS method [16] is usually used as a classic linear fore-
casting method to predict DM voltages. It enjoys a faster con-
vergence speed than the least mean squares (LMS) algorithm. Now
we describe the theory of the DM voltage prediction based on RLS
linear method briefly. We define Vi, V, as future voltages and
history voltages, respectively. On the assumption that there is a
linear relationship between V; and V,

Vi=[W,W_,, ..., W]V, + e )

let W=[W, W,_;, ..., Wj], V; = W-V, + e, and solve the weighting
matrix W by RLS. In order to get the minimum error, S(V,) is ob-
tained by LMS error criterion:

S(W) = e’e = (V; - WV (V; - WV)) A3)
Hence S(W) is given by:
W = (ViVy 'V, V; %)

We take Eq. (4) into Eq. (2), where the value of V; is the desired
prediction voltage.
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Fig. 2. Three-layer BP neural network for DM voltage prediction.
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