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a b s t r a c t

We study the evolution of the quantum state of n photons in m different modes when they go through a
lossless linear optical system. We show that there are quantum evolution operators U that cannot be built
with linear optics alone unless the number of photons or the number of modes is equal to one. The
evolution for single photons can be controlled with the known realization of any unitary proved by Reck,
Zeilinger, Bernstein and Bertani. The evolution for a single mode corresponds to the trivial evolution in a
phase shifter. We analyze these two cases and prove that any other combination of the number of
photons and modes produces a Hilbert state too large for the linear optics system to give any desired
evolution.

& 2016 Elsevier B.V. All rights reserved.

1. Quantum optics in photon-preserving linear systems

There are many optical elements that can affect the quantum
state of light. Elements that preserve the number of photons are
particularly interesting in quantum optics and in applications to
quantum information [1–3]. Linear, lossless, passive systems have
received a great deal of attention since the demonstration that,
combined with measurement, they can be used to build a uni-
versal quantum computer [4]. Recently there has been a revived
interest kindled by the result that the output statistics of linear
optics multiports cannot be accurately predicted in a classical
computer efficiently unless several well-founded computational
complexity hypothesis are false [5].

In this paper, we study the behavior of optical systems that act
on n photons in m different modes. We call ×m m multiport to a
linear optical system that conserves the number of photons (it is
lossless and passive). The evolution of the state of the photons can
be characterized from the scattering matrices S used to describe
m-ports in classical electromagnetism [6]. The simplest example is
a system with photons traveling in different paths, but we can also
imagine photons in orthogonal polarization states or which have
orthogonal orbital angular momentum states. We stick to the port
denomination for the intuitive picture it gives, but it is enough

that the photons can be in different orthogonal modes. The key is
that two photons in different modes are perfectly distinguishable
and do not interfere.

The inputs to our system are a combination of states with ni
photons in a mode with index i, denoted by ni i

. For a system with
a total number of photons n, all the possible input states can be
described as a linear combination of states

Ψ = … ( )n n n 1m m1 1 2 2

with + + ⋯ + =n n n nm1 2 . Linear optics multiports present at
their output a linear combination of states of the same form.

The evolution of a photonic quantum state in our system can be
specified from a unitary matrix U so that Ψ Ψ= Uout in . The clas-
sical scattering matrix S is enough to characterize the evolution of
any number of photons entering the multiport. Both S and U must
be unitary matrices as they describe systems that conserve energy
and the total probability, respectively.

The step from S to U depends on the number of photons. If we
take the basis composed of the number states of Eq. (1), the ele-
ment of U that describes the transition from

Ψ = …n n nm min 1 1 2 2
to Ψ = ′ ′ … ′n n nm mout 1 1 2 2

can be de-

termined from ′ ′ … ′ …n n n U n n nm m m m1 1 2 2 1 1 2 2
, which has a va-

lue
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In Eq. (2), ( )SPer in,out is the permanent of a matrix Sin,out with
elements Si j, from S such that each row index i appears exactly ′ni

times and each column index j is repeated exactly nj times [5,7].
Alternatively, we can write our number states from their

creation operators [8] so that
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and see how the operators transform. For a linear optics multiport,

we know [9] the creation operator ^ †
ai evolves into

∑ ^
( )=

†
S a .
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The size of the scattering matrix is a function of the number of
inputs and outputs of the optical system. S is an ×m m matrix,
whereas U is an ×M M matrix, withM the size of the Hilbert space
that contains all the possible configurations of n photons divided
into m modes. These different states form a complete basis of the
state space and their number is equivalent to the number of ways
of placing n indistinct balls in m different boxes, which is the
combinatorial number
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We can generate all the possible states recursively if we assign
a photon number i from 0 to n to the first mode and then generate
all the possible states for the −n i remaining photons in the rest of
the modes. By the time we arrive to the last mode the assignment
is trivial and we can repeat the procedure until we have a com-
plete list.

2. Universal quantum transformations

We say we have universality if, for our number of photons n
and the number of modes m of our system, we can generate any
desired quantum evolution U in the state space of all the possible
distributions of the n photons in the m modes.

In this paper, we show that there are limitations to the quan-
tum transformations U we can create from a linear optics multi-
port. While we can implement any desired unitary scattering
matrix S using only beam splitters and phase shifters [10], a tai-
lored S can only produce any arbitrary U in a limited set of cases.

This is a problem different from finding a universal set of gates
for quantum computation. In most linear optics implementations
of quantum computing we restrict ourselves to only a subset of all
the possible quantum states and there is some kind of
postselection.

3. Degrees of freedom and universality

The main result of the paper is a proof that there is a necessary
condition for universality which is only satisfied in a limited
number of cases for which there are explicit ways to describe how
we can generate any desired U.

The basic argument is that the degrees of freedom we have
when we build the multiport must be at least equal to the degrees
of freedom in the photonic Hilbert space. Otherwise, there will be
transformations that are impossible to perform.

This intuitive argument becomes clear from the combinatorial
growth of M with the size of the problem, which rapidly overtakes
the available degrees of freedom in S. While it is obvious that for
an increasing size this must be the case and this limitation is

commonly taken for granted [11], in this paper we provide an
explicit proof of impossibility and give an exhaustive analysis of
the number of photons and ports for which we can build any
wanted unitary.

First we formalize the degrees of freedom argument in terms of
group theory.

Lemma 1. A linear optics multiport with m inputs cannot be used to
give all the possible quantum evolutions in the state space of n
photons in m distinct modes unless ≥m M , where M is the dimension
of the Hilbert space of the photonic states.

Proof. The unitary group ( )U m2 contains the ×m m matrices S
that describe the linear optics system and the unitary group ( )U M2

contains the ×M M matrices U that describe the quantum evo-
lution of the photons' state. Using the expression of Eq. (2) or Eq.
(4) we can define a group homomorphism φ →S U: which maps

( )U m2 to ( )U M2 preserving the group structure [5]. We can only
reach all the matrices in ( )U M2 if φ is surjective, which for our
unitary groups is equivalent to asking for φ to be an epimorphism.
The homomorphism can only be surjective if the dimension
of the domain of φ is at least as large as its codomain (the image).
In our problem, the condition is ≥m M2 2, which, for the ranges we
are interested in, reduces to the necessary condition for uni-
versality
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The intuition behind this result is that we have only a limited
number of degrees of freedom when we build the linear optics
system. If the target state space is too big, we cannot reach all the
possible matrices U.

In terms of matrices, we can give a more relaxed argument
pointing out that an ×m m unitary matrix has m2 real degrees of
freedom. Any unitary matrix U can be written as the exponential
of a Hermitian matrix = †H H where we can only choose m real
values for the main diagonal of H and ( − )m m /22 free complex
parameters for the upper (or lower) triangular matrix excluding
the main diagonal. This makes a total of m2 real parameters. If

>M m, there are only m2 real parameters that cannot give all the
possible variations of the M2 real parameters of an ×M M unitary
matrix.

In the following sections, we show that in all the cases where
necessary condition of Eq. (6) is met (n¼0, n¼1 and m¼1), there
is also an explicit way to find any desired unitary. For >n 1 and

>m 1 we prove it is impossible to implement all possible unitary
matrices U using linear optics alone.

3.1. The vacuum state is always taken to the vacuum

The first trivial result is that linear optics preserves the vacuum
state with zero photons. This is obvious as a passive linear optics
multiport cannot create photons, but can also be deduced from the
necessary condition of Eq. (6). For n¼0, our Hilbert space has a
dimension
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and ≥m 1 for any linear optics system, which will have,
at least, one input. There can be many unused degrees of freedom.
With no photons the exact configuration of the linear optics
multiport is irrelevant and we can choose different scattering
matrices.
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