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a b s t r a c t

We discuss a scheme for the coherent control of light and plasmons in nanoparticles that have nonlocal
dielectric permittivity and contain nonlinear impurities or color centers. We consider particles which
have a response to light that is strongly influenced by plasmons over a broad range of frequencies. Our
coherent control method enables the reduction of absorption and/or suppression of scattering.

& 2016 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Recent progress in nanophotonics and plasmonics has led to
many important applications, including photovoltaics [1–3], sen-
sors [4] and medicine [5]. Coherent control is a very topical subject
in this area of research as it allows one to enhance the interaction
of light with matter at the nanoscale: several groups have in-
vestigated nonlinear [6] and linear control based on pulse shaping
[7–11], a combination of adaptive feedbacks and learning algo-
rithms [12], as well as optimization of coupling through coherent
absorption [13] and time reversal [14]. Coherent control of second-
harmonic generation has been studied in nanowires [15,16] and
nanospheres [17,18] while, in quantum optics, interference be-
tween fields was proposed as a way to suppress losses in a beam
splitter [19] and has been recently applied to show control of light
with light in linear plasmonic metamaterials [20]. These control
methods have been applied only to systems with local responses.
Particles with spatially nonlocal response behave very differently
from particles with local response as they support irrotational
charge density waves, such as plasmons, that do not radiate and
can reach the central region of the particle over a large range of
frequencies; on the contrary, particles with local responses sup-
port longitudinal modes only when the real part of the electric
permittivity ϵ is null [21]. As a result, particles with nonlocal re-
sponses also exhibit a shift of the main resonance with respect to
particles with local response for the same geometry and, in some

metals, also have extra resonances at short wavelengths [22–27].
From the point of view of control, the main difference between
media with local and nonlocal response is that in media with
nonlocal response we can use light to control not only internal and
scattered light, but also currents. In previous papers we have de-
veloped a coherent control theory for metallic nanospheres with
diameters of at least 50 nm, for which nonlocal effects may be
important only in a very thin layer at the boundary of the particles
[17,18] where nonlinear processes take place. In this paper we
investigate smaller nanoparticles in which the nonlinearity is due
to an impurity, or color centers, inside the particle and for which
nonlocal effects are important not only at the surface. We focus
here on nanospheres because in this case the theory is fully ana-
lytical, but the approach we develop is based on the interference
of fields at the surface of the particle and can be applied whenever
longitudinal and transverse waves are both allowed, in-
dependently of the shape of the particle or the origin of the
longitudinal waves. In particular, systems such as core-shell
spherical particles, with diameters of −50 100 nm and an external
layer with nonlocal response of a few nanometers, have similar
properties to the spheres we consider here and interact more
strongly with light. Consequently, these types of systems would be
better from the point of view of applications. In this case, the
control can be modeled similarly to the control method employed
here by using the Mie theory for layered spheres [28,29]. However,
depending on the materials used, there could be electron spill-out
between the inner core and outer layer which would need to be
included in the modeling of nonlocality [30].

We develop coherent control techniques which are extremely
sensitive to phase variations and produce a reduction of the
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absorption and variations of the scattered energy or of the am-
plitudes of the plasmons over several orders of magnitude. These
unusual features enable applications such as detection of deeply
sub wavelength changes in the position of the particle, reduction
of dissipation, suppression of radiative losses, sensing of variations
in the electric permittivity ϵ and magnetic permeability μ and
optical routing.

2. Including nonlocality in Maxwell's equations

When one of the characteristic dimensions of the particle/
structure is of the order of the electron free path, the free current
is governed by a nonlocal equation that admits longitudinal waves.
In the hydrodynamical model [22–27], the nonlocal response is
modeled semi-classically by considering the free charges in the
metal as a fluid governed by the linearized Navier–Stokes equation
and with a pressure term that has a quantum origin and is pro-
portional to the Fermi velocity. The interaction of the particle with
light is then given by Maxwell's equations combined with the
linearized Navier–Stokes equations [31],

μ∇ × = − ∂ ( )E H , 1t

∇ × = ∂ ϵ + ( )⎡⎣ ⎤⎦H E P , 2t b f

( )γ β ω∂ + ∂ − ∇∇· = ϵ ( )P E, 3tt f t f p
2

0
2

where E , H are the electric and magnetic fields, Pf is the polar-
ization due to the free current density (∂ = )J P Jf t f f , ϵb is the electric
permittivity due to the bound charges, γf is the damping factor
due to collisions of the free charges, ωp is the plasma frequency of
the material and β = ( )v3/5 F

2 2, with vF the Fermi velocity. The
nonlocal term ∇∇·Pf in (3) affects the interaction of the particle
with light in two ways. First, the electric field contains both a
transversal part (∇· = )E E 0T T and a longitudinal part (∇ × = )E E 0L L ,
each with it's own dispersion relation. The longitudinal waves are
expanded in terms of the longitudinal solutions of the Helmholtz
equation and are associated with charge density waves, such as
plasmons, but not to radiation as EL is decoupled from time-de-
pendent magnetic fields. Secondly, (3) also modifies the interac-
tion with light through an additional boundary condition that is
necessary to determine Pf . This boundary condition is considered
together with the usual continuity of the tangent components of E
and H [32]. In media that do not support a surface density of free
charges, the component of the free current density normal to the
boundary of the particle is continuous [26,27]. At a dielectric-
metal interface, this condition implies that the normal component
of Pf in the metal has to vanish at the boundary, as dielectrics do
not support free currents. Using the integral version of the diver-
gence and an infinitesimal pillbox on the right-hand side of (2)
shows that the normal component of ϵ +E Pb f is also continuous at
the boundary. Therefore the continuity of the normal component
of Pf is equivalent to the continuity of the normal component of
ϵ Eb , which provides the additional boundary condition,

( )^·ϵ = ^·ϵ + ( )n E n E E , 4b
i i

b
e s 0

where ϵeb, ϵib are the permittivity due to bound charges of the
external and internal media respectively, and E i, Es, E0 are the
internal, scattering and incident fields. From (2) we have
∇· = − ∇·ϵP Ef b , which can be used to find the dispersion relation of
the longitudinal waves and to recast the Maxwell equations in
terms of the longitudinal and transverse electric fields; we then
use the boundary conditions to determine the amplitudes of the
longitudinal and transverse waves. The additional boundary

condition in (4) and the presence of EL lead to modified Mie
coefficients [33] for the sphere.1

3. Mode structure

At the heart of our theory is the Stratton-Chu representation
theorem that allows one to express any internal and scattered
fields of any smooth (possibly inhomogeneous) particle in terms of
integral operators acting on the electromagnetic fields at the sur-
face of the particles [34]. In practice this means that the response
of a particle to light generated by impressed driving sources
(which are either internal or external) can be determined
by expanding the internal and the scattered fields in terms solu-
tions of Maxwell's equations for the internal and the external
media that can approximate any field incident to the surface
of the particle from the inside or the outside with arbitrary
precision [35]. By defining surface fields with the electric and
magnetic component parallel to the surface of the particle as

( ) ( )≡ − ^ × ^ × − ^ × ^ ×⎡⎣ ⎤⎦f n n E n n H,
T
, where T means transpose, n̂

is the unit vector normal to the surface, and the scalar product of
two surface fields is the overlap integral ∫· = ∑ = *f f f f sdi S1 2 1

3
1 2i i

,

where the index i labels the components of an arbitrary system of
coordinates, the coefficients of the Mie modes of a sphere with
local response are determined by projecting the incident fields on
these modes using analytical formulae based on the scalar product
defined on the surface [36]. These formulae apply also to particles
whose modes can be found only numerically [35] and are very
useful to determine the phase and amplitude of coherent light
sources in order to modify the linear [36] and nonlinear [17,18]
response of nanoparticles.

For particles with nonlocal response, one has also to include a
complete set of longitudinal modes of the electric field corre-
sponding to the plasmons; the coefficients for transverse and
longitudinal modes can be calculated by fulfilling the continuity of
the transverse component of the electric and magnetic fields as
well as the boundary condition in (4) on the normal component of
the electric field. To take into account (4), we need to also include
the normal part of the electric field in the definition of the surface
fields so that they now have five components,

( ) ( )≡ ^·ϵ − ^ × ^ × − ^ × ^ × ( )
⎡⎣ ⎤⎦f n E n n E n n H, , , 5b

i e
T

/

where ϵbe is used for scattered and external fields, and ϵbi is used
for the internal field.2 The scalar product between surface fields is
modified accordingly, and is given by the sum of the overlap in-
tegrals of these five components. As a consequence of the sphe-
rical symmetry, only modes with the same value of l (orbital an-
gular momentum) andm (angular momentum along z) can couple.
For each value of l and m, using the angular dependence, one can
group the modes into two sets: the set of transverse electric
modes—as in a sphere with local response—and a set of two in-
ternal modes (the transverse magnetic and the longitudinal mode)
and the transverse magnetic scattering mode. In a sphere the
analysis can be limited to sets of modes with the same l and m
because two modes with different l or m are orthogonal. For non

1 Note that in [22] the authors claim that it is not physically possible to dis-
tinguish between free and bound charges and, therefore, that it should be the
normal component of the total current which is continuous at the surface. Using a
similar approach as the one above, this assumption is equivalent to the continuity
of the normal component of the electric field [23]. There is very limited difference
in the numerical results given by these two additional boundary conditions and no
experimental evidence to support one over the other.

2 Using the additional boundary condition described in [22,23], the first
component of (5) should be replaced by ^·n E
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