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ABSTRACT

We report several major theoretical steps towards realizing stable long-distance multichannel soliton
transmission in Kerr nonlinear waveguide loops. We find that transmission destabilization in a single
waveguide is caused by resonant formation of radiative sidebands and investigate the possibility to in-
crease transmission stability by optimization with respect to the Kerr nonlinearity coefficient y. More-
over, we develop a general method for transmission stabilization, based on frequency dependent linear
gain-loss in Kerr nonlinear waveguide couplers, and implement it in two-channel and three-channel
transmission. We show that the introduction of frequency dependent loss leads to significant en-
hancement of transmission stability even for non-optimal y values via decay of radiative sidebands,
which takes place as a dynamic phase transition. For waveguide couplers with frequency dependent
linear gain-loss, we observe stable oscillations of soliton amplitudes due to decay and regeneration of the

Transmission stabilization and radiative sidebands.

destabilization

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The rates of transmission of information in broadband optical
waveguide systems can be significantly increased by transmitting
many pulse sequences through the same waveguide [1-3]. This is
achieved by the wavelength-division-multiplexing (WDM) meth-
od, where each pulse sequence is characterized by the central
frequency of its pulses, and is therefore called a frequency channel.
Applications of these WDM or multichannel systems include fiber
optics communication lines [1-3], data transfer between computer
processors through silicon waveguides [4,5], and multiwavelength
lasers [6,7]. Since pulses from different frequency channels pro-
pagate with different group velocities, interchannel pulse colli-
sions are very frequent, and can therefore lead to severe trans-
mission degradation [1]. Soliton-based transmission is considered
to be advantageous compared with other transmission formats,
due to the stability and shape-preserving properties of the soli-
tons, and as a result, has been the focus of many studies [1-3].
These studies have shown that effects of Kerr nonlinearity on in-
terchannel collisions, such as cross-phase modulation and four-
wave-mixing, are among the main impairments in soliton-based
WDM fiber optics transmission. Furthermore, various methods for
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mitigation of Kerr-induced effects, such as filtering and dispersion-
management, have been developed [2,3]. However, the problem of
achieving stable long-distance propagation of optical solitons in
multichannel Kerr nonlinear waveguide loops remains unresolved.
The challenge in this case stems from two factors. First, any ra-
diation emitted by the solitons stays in the waveguide loop, and
therefore, the radiation accumulates. Second, the radiation emit-
ted by solitons from a given channel at frequencies of the solitons
in the other channels undergoes unstable growth and develops
into radiative sidebands. Due to radiation accumulation and to the
fact that the sidebands form at the frequencies of the propagating
solitons it is very difficult to suppress the instability. In the current
paper, we report several major steps towards a solution of this
important problem.

In Refs. [8-13], we studied soliton propagation in Kerr non-
linear waveguide loops in the presence of dissipative perturba-
tions due to delayed Raman response and nonlinear gain-loss. We
showed that transmission stabilization can be realized at short-to-
intermediate distances, but that at large distances, the transmis-
sion becomes unstable, and the soliton sequences are destroyed.
Additionally, in Ref. [10], we noted that destabilization is caused by
resonant formation of radiative sidebands due to cross-phase
modulation. However, the central problems of quantifying the
dependence of transmission stability on physical parameter values
and of developing general methods for transmission stabilization
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against Kerr-induced effects were not addressed. In the current
paper we take on these problems for two-channel and three-
channel transmission by performing extensive simulations with a
system of coupled nonlinear Schrodinger (NLS) equations. We first
study transmission in a single lossless waveguide and investigate
the possibility to increase transmission stability by optimization
with respect to the value of the Kerr nonlinearity coefficient. We
then demonstrate that significant enhancement of transmission
stability can be achieved in waveguide couplers with frequency
dependent linear loss and gain and analyze the stabilizing me-
chanisms. This stabilization is realized without dispersion-man-
agement or filtering.

2. The coupled-NLS propagation model

We consider propagation of N sequences of optical pulses in an
optical waveguide in the presence of second-order dispersion, Kerr
nonlinearity, and frequency dependent linear gain-loss. We as-
sume a WDM setup, where the pulses in each sequence propagate
with the same group velocity and frequency, but where the group
velocity and frequency are different for pulses from different se-
quences. The propagation is then described by the following sys-
tem of N coupled-NLS equations [1,10]:

iz)zy/j + 0?1//] + j/|l//j|21//j + 2y z Iy/klzylj = iT_](%(w)ll%)/Z,

k#j (1)
where yj; is the envelope of the electric field of the jth sequence,
1 <j <N, z is propagation distance, t is time, w is frequency, y is
the Kerr nonlinearity coefficient, and the sum over k extends from
1to N[14]. In Eq. (1), &gj(w) is the linear gain-loss experienced by

the jth sequence, y’)j is the Fourier transform of ¥ with respect to

time, and # ' is the inverse Fourier transform. The second term on
the left-hand side of Eq. (1) is due to second-order dispersion, the
third term describes self-phase modulation and intrasequence
cross-phase modulation, while the fourth term describes inter-
sequence cross-phase modulation. The term on the right-hand
side of Eq. (1) is due to linear gain-loss. The optical pulses in the
jth sequence are fundamental solitons of the unperturbed NLS
equation iazl//j + a?y/j + yll//jlzy/j = 0. The envelopes of these solitons

are given by y/sj(lf, 2) = 1 exp(i;(j)sech(xj),

X = (¢[2) Pt =y, = 282), 2 = @y + Bt = ¥) + (|2 = pHz, and 7,
B vj, and a; are the soliton amplitude, frequency, position, and
phase.

Notice that Eq. (1) describes both propagation in a single wa-
veguide and propagation in a waveguide coupler, consisting of N
close waveguides [15]. In waveguide coupler transmission, each
waveguide is characterized by its linear gain-loss function gj(w).
The form of (@) is chosen such that radiation emission effects are
mitigated, while the soliton patterns remain intact. In particular,
we choose the form

where

gw)=—g + %(geq + gpltanh{plow — ,0) + W/2])
~tanh{pla - $(0) - W/[2]}], @)

where 1 <j <N, and £(0) is the initial frequency of the jth se-
quence solitons. The constants gj, Zq p, and W satisfy g >0,
8y 2 0, p>1, and Ap > W > 1, where Ap is the intersequence fre-
quency difference. We note that the condition Ag > 1 is typical for
soliton-based WDM transmission experiments [16-20]. Fig. 1
shows typical linear gain-loss functions g,(w) and g,(w) for a two-
channel waveguide coupler with g =0.5, 8 = 3.9 x 1074,

$(0) = — 5, p,(0) = 5, W=5 and p = 10 (these parameters are used
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Fig. 1. An example for the frequency dependent linear gain-loss functions gj(w)
defined by Eq. (2) in a two-channel waveguide coupler. The solid blue and dashed
red lines correspond to g(w) and g)(w), respectively. (For interpretation of the re-
ferences to color in this figure caption, the reader is referred to the web version of
this paper.)

in the numerical simulations, whose results are shown in Fig. 8). In
the limit as p>1, gj(w) can be approximated by a step function,
which is equal to g4 inside a frequency interval of width W cen-
tered about B(0), and to —g, elsewhere:

Zog ITA0) = W2 <0 < B(0) + W)2,
&) = -g, elsewhere. 3)

The approximate expression (3) helps clarifying the advantages of
using the linear gain-loss function (2) for transmission stabiliza-
tion. Indeed, the relatively strong linear loss g; leads to efficient
suppression of radiative sideband generation outside of the fre-
quency interval B0 - w2, £(0) + W |/2]. Furthermore, the rela-
tively weak linear gain g, in the frequency interval
(ﬁj(O) - Wj2, /Jj(O) + W/2] compensates for the strong loss outside
of this interval and in this manner enables soliton propagation
without amplitude decay. In practice, we first determine the va-
lues of g;, W, and p by performing simulations with Egs. (1) and (2)
with 8= 0, while looking for the set that yields the longest stable
propagation distance. Once g;, W, and p are found, we determine
8eq by requiring n(2) = 1;(0) = const for 1 <j < N throughout the
propagation. More specifically, we use the adiabatic perturbation
theory for the NLS soliton (see, e.g., Ref. [3]) to derive the following
equation for the rate of change of 7; with z due to the linear gain-
loss (2):

dn. [ w

i b
=8t Gyt ) tanh[—”2 ;-
Requiring n(2) = 1;(0) = const, we obtain the following expression

for geq:
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"
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Since different pulse sequences propagate with different group
velocities, the solitons undergo a large number of intersequence
collisions. Due to the finite length of the waveguide and the finite
separation between adjacent solitons in each sequence, the colli-
sions are not completely elastic. Instead, the collisions lead to
emission of continuous radiation with peak power that is inversely
proportional to the intersequence frequency difference Ap. The
emission of continuous radiation in multiple collisions eventually
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