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a b s t r a c t

The depolarization properties of a medium with associated Mueller matrix M are characterized through
two complementary sets of parameters, namely 1) the three indices of polarimetric purity (IPP), which
are directly linked to the relative weights of the spectral components of M and provide complete in-
formation on the structure of polarimetric randomness, but are insensitive to the specific polarimetric
behaviors that introduce the lack of randomness, and 2) the set of three components of purity (CP),
constituted by the polarizance, the diattenuation and the degree of spherical purity. The relations be-
tween these sets of physical invariant quantities are studied by means of their representation into a
common purity figure. Furthermore, the polarimetric properties of a general Mueller matrix M are
parameterized in terms of sixteen meaningful quantities, three of them being the IPP, which together
with the CP provide complete information on the integral depolarization properties of the medium.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mueller polarimetry is applied for the analysis and study of a
great variety of material samples in a continuously increasing
number of areas of science, engineering, industry, medicine, etc.
Nevertheless, the interpretation of the measured Mueller matrices,
as well as the extraction of physical parameters containing de-
coupled information on the nature and properties of the sample is
not a straightforward task. The polarimetric features of a material
medium combine, in a complicated manner, polarizing, diattenu-
ating, retarding and depolarizing effects. Therefore, the optimum
knowledge of the structure of Mueller matrices is strongly re-
quired for the exploitation of polarimetric measurements.

This work is devoted to the the study of the depolarization
properties of a material sample and describes how the two alter-
native approaches called the indices of polarimetric purity (here-
after IPP) [1] and the components of purity (hereafter CP) [2] are
mutually related and can be jointly analyzed by means of their
graphic representation into an common purity figure. For the sake
of self-consistency and readability, this article is organized into the
following sections. The present Section is devoted to the in-
troduction of the main general notions involved in the further
developments as well as the necessary conventions, terminology
and notation. Sections 2 and 3 deal respectively with the definition
and interpretation of the IPP and the CP of a medium with a given
associated Mueller matrix M. There are some polarimetric

properties of a given material medium (including both IPP and CP)
that remain invariant when the medium is serially combined with
retarders, so that all so-called invariant-equivalent Mueller ma-
trices, which constitute the subject of Section 4, share the same
location in the purity figure. The purity figure, where the different
types of Mueller matrices are represented according to the values
of their CP and their IPP is studied in Section 5. Section 6 is
dedicated to the analysis of the purity figures for the type-I and
type-II canonical depolarizers [3]. These kinds of matrices are of
special interest because they are representative of some intrinsic
depolarizing properties of a given Mueller matrix M. Section 7
deals with a parameterization of M in terms of meaningful phe-
nomenological parameters that highlights the fact that depolar-
ization is fully characterized, in quantity and quality, by means of
five parameters, namely the three IPP, the diattenuation and the
polarizance. Finally, Section 8 summarizes and discusses the main
results and conclusions.

The interaction of a fully polarized beam with a medium that
behaves as linear, deterministic, homogeneous and non-depolar-
izing, can be represented by means of the transformation
Φ Φ′ = †T T , where Φ, Φ′ are the input and output polarization
matrices respectively, T is the Jones matrix that characterizes the
polarimetric properties of the nondepolarizing medium for the
given interaction conditions, and the dagger indicates conjugate
transposed. This basic polarimetric interaction can also be ex-
pressed as ′ =s M sJ in terms of the corresponding input and
output Stokes vectors (s and ′s respectively) and the Mueller-Jones
matrix (or pure Mueller matrix) ( )M TJ .

The physical polarimetric quantities that characterize this kind

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

http://dx.doi.org/10.1016/j.optcom.2016.01.092
0030-4018/& 2016 Elsevier B.V. All rights reserved.

E-mail address: ppgil@unizar.es

Optics Communications 368 (2016) 165–173

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2016.01.092
http://dx.doi.org/10.1016/j.optcom.2016.01.092
http://dx.doi.org/10.1016/j.optcom.2016.01.092
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2016.01.092&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2016.01.092&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2016.01.092&domain=pdf
mailto:ppgil@unizar.es
http://dx.doi.org/10.1016/j.optcom.2016.01.092


of pure systems can be easily identified by means of product (se-
rial) decompositions of T (or MJ), as for instance the polar de-
composition [4] or the general serial decomposition [5,6]. Thus,
the diattenuation, the polarizance and the retardance exhibited by
the pure medium are easily decoupled and interpreted.

In general, the polarimetric behavior of a medium can be
considered as a sort of incoherent convex sum, or ensemble
average, of nondepolarizing interactions, in such a manner that a
physical Mueller matrix can be expressed as a convex sum of pure
Mueller matrices [7,8].

Leaving aside passivity constraints (i.e. the fact that naturally
occurring phenomena do not increase the intensity of the in-
coming electromagnetic beams), two alternative, but equivalent,
ways for the general characterization of Mueller matrices have
been reported 1) the nonnegativity of the Hermitian matrix H
(covariance or coherency matrix) associated with a given physical
Mueller matrix (Cloude’s criterion) [9,10], and 2) the nonnegativity
of the N-matrix GM GMT , where ≡ ( − − − )G diag 1, 1, 1, 1 is the
Minkowski metric [11–15].

Thus, the structure of a general (depolarizing) Mueller matrix is
rather more complicated than that of a pure Mueller matrix. In
fact, unlike the transmittance (or reflectance) for unpolarized in-
put light (hereafter called mean intensity coefficient), and unlike
the diattenuation and polarizance properties, which are easily
identified and defined from the given Mueller matrix M [16,17],
the identification and parameterization of the depolarization
properties are not so straightforward and require particular study
and analysis.

Let us first recall that any Mueller matrix M can be expressed as
[18]
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where D and P are the respective diattenuation vector and polar-
izance vector of M. The absolute values of these vectors are the
diattenuation ≡D D and the polarizance ≡P P . Both polarizance P
and diattenuation D have dual nature depending on the direction
of propagation of light (forward or reverse) [10,19]; in fact, D is
both the diattenuation of M and the polarizance of the reverse
Mueller matrix ≡ ( − ) ( − )M Mdiag 1, 1, 1, 1 diag 1, 1, 1, 1r T [20,21]
(MT being the transposed matrix of M) corresponding to the same
interaction as M but interchanging the input and output direc-
tions. The mean intensity coefficient ofM is given by m00. For some
purposes, it is useful to use the following normalized version of M
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2. Components of purity

As a necessary step before further analyses, let us consider the
notion of polarimetric purity. A given Mueller matrix M inherits, in
some way, the statistical nature of the medium to which M is
associated under given interaction conditions. Recall that a med-
ium has a different associated Mueller matrix depending on 1) the
spectral profile of the probe light beam; 2) the kind of interaction
considered: refraction, reflection, scattering…; 3) the relative or-
ientation of the medium with respect to the input beam; 4) the
observation angle, etc. A medium that does not depolarize any
totally polarized input beam is polarimetrically indistinguishable
from a deterministic medium with well-defined Jones matrix T

[and hence with well-defined pure Mueller matrix ( )M TJ ] [5,22].
This kind of media is called pure or nondepolarizing. The closer is
the polarimetric behavior to that of a nondepolarizing medium,
the higher is its polarimetric purity.

A global measure of the degree of polarimetric purity of a
medium is given by the depolarization index of M [16] defined as

( )= + + ( )ΔP D P P3 /3 3S
2 2 2

in terms of the components of purity (CP), namely the polarizance P,
the diattenuation D and the degree of spherical purity ≡ ‖ ‖P m / 3S 2

[2] (‖ ‖m 2 representing the Euclidean norm of the ×3 3 submatrix
m). Conversely, an overall measure of the depolarizing power of a
medium is given by the depolarizance

≡ − ( )Δ ΔD P1 42

Note that depolarizance was defined previously as = −Δ ΔD P1 ,
but for reasons that are explained in Ref. [6], we consider more
appropriate the indicated form.

Pure Mueller matrices are characterized by =ΔP 1 ( = )ΔD 0 ,
while Mueller matrices satisfying <ΔP 1 ( > )ΔD 0 are called nonpure
or depolarizing Mueller matrices. A medium satisfying =ΔP 0
( = )ΔD 1 converts any input polarization state into a fully depo-
larized output one. Despite the fact that ΔP is an objective overall
measure of the polarimetric purity (lack of randomness of the
polarimetric properties of the interaction represented by M) it
does not provide enough information for a complete para-
meterization of the polarimetric purity of M.

While P and D measure the relative portions of purity due to
polarizance and diattenuation properties respectively, PS is a
measure of the portion of purity that is not due to polarizance or

diattenuation [2]. That is, the closer is M̂ to the Mueller matrix of a
pure retarder (i.e., to an orthogonal Mueller matrix) the higher is

the value of PS . In fact, =P 1S if and only if M̂ is an orthogonal
matrix. The value of PS is restricted to ≤ ≤P0 1S , where the lower
limit =P 0S is reached when the submatrix m is just the zero
matrix and therefore the corresponding Mueller matrix has the
form of an absolute partial polarizer-analyzer
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which is necessarily depolarizing since the minimum value of PS

compatible with total purity of M is =P 1/ 3S [2]. A detailed study
of the achievable values for P, D and PS can be found in Ref [2].

Because of the common nature of P and D, and regardless the
fact that they have respective specific and well-defined physical
meanings, for some purposes it is useful to group them into the
degree of polarizance [2]

≡ + ( )P P D / 2 6P
2 2

which is an overall measure of the polarizing power of the system
represented by the Mueller matrix M (both forward and reverse
incidence directions being considered). The value of PP is restricted
to ≤ ≤P0 1P , so that =P 1P corresponds to a total polarizer (the
output states of both M and Mr are fully polarized regardless the
degree of polarization of the input states). It should also be noted
that pure diattenuators satisfy the condition = −P P1 2 /3S P

2 2 [2], so
that a certain amount of spherical purity is consubstantial to this
kind of systems. The value =P 0P is reached when the corre-
sponding Mueller matrix M has zero polarizance and zero
diattenuation.

Eq. (3) shows that the value of ΔP is composed of the three
complementary contributions of the corresponding components of
purity P, D and PS . Let us call sources of purity the quantities PP and
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