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a b s t r a c t

We study the normal modes and quasi-normal modes (QNMs) in circular dielectric microcavities through
non-Hermitian Hamiltonian, which come from the modifications due to system–environment coupling.
Differences between the two types of modes are studied in detail, including the existence of resonances
tails. Numerical calculations of the eigenvalues reveal the Lamb shift in the microcavity due to its in-
teraction with the environment. We also investigate relations between the Lamb shift and quantized
angular momentum of the whispering gallery mode as well as the refractive index of the microcavity. For
the latter, we make use of the similarity between the Helmholtz equation and the Schrödinger equation,
in which the refractive index can be treated as a control parameter of effective potential. Our result can
be generalized to other open quantum systems with a potential term.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The so-called quantum billiard systems are conservative closed
systems with Dirichlet boundary condition described by Hermitian
Hamiltonian with real eigenvalues [1,2]. Once these systems be-
come open, i.e., coupled to their environment, the situation
changes. Generally these systems are described by a non-Hermi-
tian Hamiltonian with complex eigenvalues [3–5]. One formalism
for treating open systems was developed by Feshbach in 1958 to
deal with nuclear decay [6]. Since then the formalism has been
used in many other fields such as atomic physics [7], solid state
physics [8], and microwave cavities [9].

The Feshbach projection operator formalism yields non-Her-
mitian Hamiltonian, describing various kinds of interesting phe-
nomena such as bi-orthogonality [10], phase rigidity [11], avoided
resonance crossing [12–14], and exceptional points [15–17]. One
prominent example is the Lamb shift. It describes a small energy
shift in a quantum system caused by the vacuum fluctuations [18–
20]. Initially it was observed for a hydrogen atom, but recently the
effect has been studied in photonic crystals [21] and cavity QED
systems [22]. Here, we generalize this to dielectric microcavities.

As a microcavity is a very attractive optical source in optoe-
lectronic circuits, their emission patterns and high quality factors

have been investigated in detail both experimentally and theore-
tically [23–26]. Importantly, they provide a good platform [27,14]
to study the above-mentioned phenomena in open-quantum
systems such as bi-orthogonality, phase rigidity, avoided re-
sonance crossing, and exceptional points. We thus investigate the
Lamb shift in these systems by comparing the real eigenvalues of
the circular quantum billiards and dielectric microwave cavities.
Investigations on the openness effects are essential, as exemplified
by the concepts such as quasi-scar [28] and Goos–Hänchen shift
[29,30].

This paper is organized as follows. In Section 2 we briefly re-
view the theoretical descriptions of quantum billiards and di-
electric cavities. This is followed by a summary of Feshbach pro-
jection operator (FPO) formalism in Section 3, which yields non-
Hermitian Hamiltonians. The resulting quasi-normal modes are
compared to the normal modes of quantum billiards in Section 4.
Section 5 presents our main results on Lamb shift in a single-layer
whispering gallery mode (Section 5.1), and Lamb shift as a func-
tion of the refractive index n (Section 5.2). We summarize our
results and conclude in Section 6.

2. Quantum billiard and dielectric microcavity

While quantum billiards are completely closed system, the di-
electric microcavity is an open quantum system. The eigenvalues
of (time-independent) Hamiltonian of a quantum billiard system
and those of dielectric microcavity are solutions of Helmholtz
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equation with different boundary conditions [31] which can be
solved by boundary element methods [32]. In quantum billiards,
the wave function ψ is described by the Helmholtz equation

ψ(∇ + ) ( ) = ( )rk 0, 12 2

where k is the wave number and ψ ( )r is a wave function such that
r is a position vector inside the billiard system. Its boundary
conditions are given by

ψ

ψ

( = ) = ( )

∂ ( = ) = ( )

r

r

R

R

0 Dirichlet

0 Neumannn

where R indicates the boundary of the system, ∂n is the normal
derivative to the boundary. Note that we always fix R¼1 in this
paper. The eigenvalues are always real for quantum billiards de-
fined by the above conditions. For a dielectric microcavity with a
refractive index n, k2 of Eq. (1) must be replaced by n k2 2. In this
work, we set n to be 3.3, which is the refractive index of InGaAsP
semiconductor microcavity [25]. Therefore, the TE mode ψ ( )r
obeys the equation

ψ μ ψ∇ ( ) + ( ) ( ) = ( )r r rk 0, 22 2

where μ Θ( ) = + ( − ) ( − )r rn R1 12 , n is the refractive index of the
cavity, Θ (·) is the unit step function, and its boundary conditions
are given by
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In this paper, we consider only the TE modes. Especially, the so-
lutions of a circular cavity are Bessel functions, classified by a ra-
dial quantum number ℓ and an angular quantum number m.

3. Non-Hermitian Hamiltonian description of open quantum
system

Typically, quantum systems are not completely closed, i.e., obey
the boundary condition above Eq. (1), but are coupled to their
environment. In this case, the total Hilbert space consists of the
quantum billiard S and an environment E. The total system obeys
the Schrödinger equation

= ( )H , 3SE SE

where H is the total Hamiltonian with real energy eigenvalues,
and is the total energy of the Hamiltonian with the corre-
sponding eigenstate SE . Note that is the corresponding ei-
genstates of the energy . The quantum billiard has a discrete set
of states, while we assume that the environment has a continuous
set. We can define the projection operators ΠS and ΠE, with
Π Π+ = S E SE and Π Π Π Π= = 0S E E S . Here,ΠS is a projection onto the
quantum billiard system whereas ΠE is a projection onto the en-
vironment, and SE is an identity operator defined on the total
space [3,4]. In this case, the total Hamiltonian is generally given by

= + + + ( )H H H V V , 4S E SE ES

where Π Π= HHS S S and Π Π= HHE E E are the Hamiltonian of the
quantum billiard system and environment, respectively, and

Π Π= ≡HV VSE S E and Π Π= ≡ †HV VES E S are interaction Hamiltonians
between the system and the environment, respectively: VSE is the
interaction from E to S and VES vice versa.

By exploiting the Hamiltonian [3–5], we can derive an effective
non-Hermitian Hamiltonian defined solely on quantum billiard
system S:

= + ( )+H H V G V 5S SE E ESeff

∫= − + ′
− ′ ( )

†
†

H H iVV P d
VV1

2
. 6S

a

b

eff

Here, +GE is an energy dependent out-going Green function, †VV is
the system interaction via the environment, and P means the
principal value. The integral domain [ ]a b, is known as energy
window determined by each decay channels. The decay channels
are well-known in a few cases such as rectangular waveguides [4],
but in dielectric microcavities, it is only known that the decay
channel corresponds to each resonance modes or quasi-normal
modes (QNMs) and they are characterized by far-field patterns
[13]. Since there is only a single decay channel with respect to each
resonance mode, we do not need a summation of decay channels
for the principal value in Eq. (6). Eq. (5) can be transformed to Eq.
(6) by Sokhotski–Plemelj theorem [33]. After all, this non-Hermi-
tian Hamiltonian has generally complex eigenvalues instead of real
eigenvalues:

ϕ ϕ Γ| 〉 = | 〉 = − ( )H z z
i

,
2

, 7j j j j j jeff

where zj is a complex number with j and Γj representing the
energy and decay width of j-th eigenvector, respectively. Hence,
the quality factor Q, as a measure of energy-storing capability, is

defined by =
Γ

Q
2

j

j
. In addition, the eigenvectors ϕ| 〉′sj are generally

not orthogonal but bi-orthogonal states satisfying ϕ ϕ δ〈 | 〉 =i
L

j
R

ij [3].
Note that L and R denote left and right eigenvectors, respectively.

4. Normal mode versus quasi-normal modes

The normal modes are eigenfunctions of the Hermitian Ha-
miltonian ( )HS with real eigenvalues and are strictly localized in
the interior of the system. On the other hand, the quasi-normal
modes can leak out into the environment. They can be written as a
sum of two parts [3]:

Ω ϕ ϕ| 〉 = | 〉 + | 〉 ( )+G V 8j j E ES j

Ω ϕ ω| 〉 ≡ | 〉 + | 〉 ( ). 9j j j

The ϕ| 〉j are eigenstates of Heff with generally complex eigenvalues
and are localized inside the system, and ω| 〉j describe the re-
sonance tails that reside entirely in the environment. Its presence
can be explained as follows. The interaction term VES gives con-
nection between the system and the environment so that the in-
terior eigenfunction can leak out of the system, which then pro-
pagates through environment by out-going Green function +GE . As
pointed out in Section 3, the decay channels are characterized by
far-field patterns, thus we should consider the decay channel as a
resonance tail rather than resonance itself, because it is defined
only in subspace E. Therefore, this ωk plays the role of decay
channel in dielectric microcavity.

The above description holds well for microcavities as shown in
Fig. 1. We can check the above situation from (a) and (b) in Fig. 1.
Fig. 1(a) shows a normal mode of circular billiard quantum system
with radial quantum number ℓ = 1, angular quantum m¼2, and
refractive index n¼3.3. In this case, we found ( ) ≅kRRe 1.556. The
wave function of the quantum billiard system resides entirely
within the boundary. It can be conformed by Fig. 1(a), since the
brighter points represent the higher probability. Note that the
completely black region outside the cavity reflects this fact.

On the other hand, Fig. 1(b) depicts a QNM with same quantum
numbers (ℓ and m) and refractive index (n). We can easily identify
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