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a b s t r a c t

We present experimental measurements of the coherence of an undulator synchrotron radiation source
near to the diffraction limit condition. These measurements have been done following two objectives.
The first one is to verify a fundamental point of the theory of synchrotron radiation. To our knowledge,
since it has been re-written by Geloni et al. [1], no experimental verification to validate the theory has
been performed. Our measurement proves the theory to be valid for the case of a near diffraction limited
undulator source. The other objective is to measure the coherence of the synchrotron radiation on the I05
beamline of Diamond, in front of the last focusing element of the beamline. This knowledge can be used
to predict the focusing performance of the beamline by means of Fourier Optics.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Third generation synchrotron light sources are now evolving
towards storage rings with emittances ranging from

10, 500 pm radϵ = [ ] . For instance, emittance of the MAX IV syn-
chrotron light source [2], soon to be commissioned, will be
240 pm rad. Similarly, a proposed project on the decommissioned
PEP presents a 12 pm rad emittance [3]. Many other projects,
planned or proposed, either using an existing facility or building a
new one, are proposing new lattices based on multi-bend achro-
mats with the purpose of having an ultra small emittance. The
undulator Synchrotron Radiation (SR) will be at the diffraction
limit for wavelengths satisfying /2 a ¢λ π( ) ̂ª ϵ [4]. So the smaller the
emittance, the smaller the undulator SR wavelength at which the
diffraction limited is reached. In this paper, important results on
the coherence properties of undulator SR are stated. To our
knowledge, these properties of undulator SR for third generation
light source operating near or at the diffraction limit have not been
experimentally verified; in particular, the non-applicability of the
van Cittert Zernike (VCZ) theorem [5] for the case of a source at the
diffraction limit. We will verify experimentally that this is effec-
tively the case: for a source at near diffraction limit, the VCZ is not
applicable. In this paper, we present measurement of the trans-
verse coherence of an undulator SR source at near the diffraction

limit, by means of a Young interferometer [6,7]. The undulator is a
quasi-harmonic 5 m long Helical undulator, designed for VUV to
soft X-ray ARPES experiments on the I05 beamline of Diamond
Light Source. Beamlines of this kind are used for photoemission
spectroscopy experiments [8], where the coherence of the light is
not exploited. In the near future, however, the beamline will be
equipped with a Fresnel Zone Plate focusing optic whose proper-
ties can be modeled only with a good knowledge of the coherence.
This paper is organized as follows. In Section 2, we will recall the
theory with the same notation as used in [1]. In Section 4 we will
present the experimental setup and condition as described with
the theoretical notation, showing that the source is fully at the
diffraction limit in the vertical plane, but only near the diffraction
limit in the horizontal plane. In Section 5 we will show the ex-
perimental results, and compare them to both the theory of an
undulator SR from statistical optics as described in [1] and pre-
diction from the VCZ theorem. Finally, we will discuss the results
before closing on concluding remarks.

2. SR coherence: theoretical background

As shown in [1], undulator SR, its cross spectral density1 and
associated spectral degree of coherence, in a general case, are
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1 The cross spectral density is given by the cross correlation of the power
spectrum of two given signals.
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described from statistical optics. Here we simply recall these ex-
pressions as given in [1] in their normalized units.

The cross spectral density, in normalized units is given by (Eq.
38 of [1])
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with G being the cross spectral density, c the speed of light;
K eH m c/w e

2λ= ¯ω the undulator deflection parameter, with e being
the electron charge and me the electron mass, Hw is the undulator
magnetic field, and λ̄ω the undulator period; c2 /ω π λ= is the radial
frequency of the SR field at which the cross spectral density is
observed, and λ its associated wavelength; A J Jjj 0 1ξ ξ= ( ) − ( ), with
Ji being the modified Bessel function at order i and with the ar-
gument K K/ 4 22 2ξ = ( + ).

Ĝ is given by (Eq. 43 of [1] in which we have also introduced
the integration over the energy distribution)
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which describes the normalized distance z to the undulator length,
Eq. (3a); the normalized photon energy difference with respect to
the undulator photon energy resonance, rω ω( − ), Eq. (3b); the
undulator length Lw and number of undulator periods Nw; the
particle transverse position with respect to the propagation axis z,
Eq. (3d), and normalized angular momentum, Eq. (3e); the ob-
servation normalized position, Eq. (3f) and angle, Eq. (3g).

The last two equations introduce normalized variables which
will be used later: the normalized difference and mean observa-
tion angles, Eqs. (3h) and (3i) respectively, between the two ob-

servation points at which Ĝ is evaluated.
So as described in [1], the normalized cross spectral density is

evaluated by means of an integration over the bunch phase-space
distribution in position, angle and energy given by the function f⊥
(position and angle) and f

Eξ̂ (energy). Assuming phase-space dis-
tributions to be Gaussian and decoupled, which is a reasonable
approximation for 3rd generation synchrotron light sources such
as Diamond, they can be expressed in terms of dimensionless
parameters as follows:
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with N4E wσ π σ^ = ϵ, and σϵ the relative beam energy spread; and
with the beam spatial and momentum distributions:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f l
N N D D

e,
1

4 5x y x y

l N l N D D

2

/2 /2 /2 /2x x y y x x y y
2 2 2 2

η
π

^
→

^
⎯→⎯

=
^ ^ ^ ^

( )

η η
⊥

− ^ ^ − ^ ^ − ^ ^ − ^ ^

with their r.m.s. values defined as

N
L

2
6x y

x y

w
,

,
2πσ

λ
^ =

( )

and

D
L

2

/ 7
x y

x y

w
,

,
2πσ

λ
^ =

( )
′ ′

and x y,σ being the transverse beam size at the center of the un-
dulator, and x y,σ ′ ′ its divergence in the horizontal and vertical axis
respectively.

The universal function CΨ is defined by Eq. 26 of [1]
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For z a ¢ 1^ ̂ª Eq. (8) turns to be a Sinus Cardinal2 (Eq. 29 [1]).

The function Ĝ can be used to evaluate the spectral degree of
coherence g as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

g z C

G z C

G z C G z C

, , , ,

, , , ,

, , ,
2

, 0 , , ,
2

, 0
9

E

E

E E

1/2 1/2

( )
( )

σ θ θ

σ θ θ

σ θ θ σ θ θ

^ ^ ^ →̄
Δ

→

=

^ ^ ^ ^ →̄
Δ

→

^ ^ ^ ^ →̄
+ Δ

→
^ ^ ^ ^ →̄

− Δ
→

( )

where G z C, , , , 0E i
1/2σ θ^ (^ ^ ^ →̄
) represents the normalized intensity3

2 Sinus Cardinal is the function x x xsinc sin /( ) = ( ) ( ).
3 The cross spectral density measured at two overlapping points is simply the

Fourier transform of the auto correlation, in other words, the power spectrum or
intensity at the observation point and at the observed frequency.
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