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a b s t r a c t

Reconstructing an image from the scattering pattern of particles with several wavelengths is difficult.
This is because precise calculation in such cases is difficult, and because there is no proper procedure to
evaluate shapes from the scattering pattern. We use rigorous coupled-wave analysis (RCWA), which we
previously developed and applied to an isolated scatterer, and rotate the particle to reconstruct the
image. We find that it is possible to discriminate between rectangles, triangles, and squares. The pre-
cision of length can be less than 0.2 of the wavelength, provided that the refractive index of the scatterer
is known.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Size and shape determination of particles is useful for blood
cell counting [1] and soil analysis [2]. Particle counters [3], flow
cytometry [1] and holography [4] are used for this purpose. One
measurement method is scatterometry, which analyzes the dif-
fraction pattern directly and has the advantage that lens focusing
is not necessary when the particle is moving. Because the preci-
sion of the lens image is not guaranteed when the particle is
smaller than 30 wavelengths [5], scatterometry is preferred for the
finer measurement.

Scatterometry can calculate the scattering pattern and estimate
the correct outline. Furthermore, it obtains a result for a wide
region of the size. Although scatterometry is promising for an
accurate analysis, few systems can calculate the scattering pattern
of a particle with a certain shape of the cross section. One reason is
that there is no simple and rigorous calculation method of scat-
tering patterns [6].

Mie theory gives a rigorous solution for a sphere. However, it is
not valid to approximate nonspherical shapes as spheres [7].

The T-matrix method, Fraunhofer approximation, or the dis-
crete-dipole approximation has been used to calculate scattering
patterns and has given a good prospect, but they do not have
sufficient precision for a scatterer with a length of several wave-
lengths [8–10]. The boundary element method (BEM), finite-dif-
ference time-domain (FDTD) method, and rigorous coupled-wave
analysis (RCWA) enable us to rigorously calculate the scattering
characteristics of a particle [11–13]. BEM takes considerable time

for programming and is not valid for unknown shape [14]. FDTD is
not necessarily valid for far field calculations [15]. RCWA is pre-
ferred because it is simpler to program and requires less calcula-
tion time to determine a scattering pattern. Although RCWA has
only been applied to periodic structures, it was recently applied to
isolated structures [15].

The determination of the shape and size of a particle from its
scattering pattern is an inverse problem [16]. Here, we consider a
rectangular beam spot that crosses the rod-like particle. We divide
the particle into many layers along the long side for calculation.
We try to calculate shape of a cross section of the particle. The
scattering pattern of the particle consists of a main peak with
several side band peaks, corresponding to diffraction. The angular
separation of these peaks contains information about the size and
shape of the particle [17]. However, to the best of our knowledge,
no one has succeeded in reconstructing an image of the cross
section of a particle a few wavelengths in size, from the diffraction
pattern when the shape is unknown. Some use the auxiliary lines
of the diffraction pattern [18]. They usually use incident light with
same direction for the diffraction pattern analysis and to clarify the
shape is difficult in the condition [18,19]. In the present paper, we
present the reconstruction method of a two-dimensional image
using RCWA.

2. Theory

Scattering intensity was calculated by RCWA [13], using the
program DiffractMODTM 1.5 (RSoft Design Group, Ossining, NY,
USA). The periodic diffraction pattern produced by rectangular
object is very similar to the diffraction pattern produced by a
rectangular aperture of the same size. According to Fraunhofer
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diffraction theory, in PQ coordinate, the diffraction pattern of a
rectangular aperture of sides 2a and 2b is given by the following
Eq. (1) [20,21]
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where, I0 is constant, k is 2π/λ, and p and q are direction cosine of
diffracted light. λ is wavelength. p and q are independent, and we
consider only a and p as parameters here.

To analyze the diffraction pattern, we used the high-order peak
in the pattern. The order of the peak may be the first, second, third
etc. The angle of the peak is theoretically related to the size of the
particle [17]. Light goes through the rectangular aperture, while on
the other hand light is scattered by the rectangular scatterer. The
scatterer works as a mask and its effect is opposite to the aperture.
By easy calculation we know that the local maximum of the pat-
tern of the rectangle has the same angle with the local minimum
of that of the rectangular aperture in the angular distribution. The
local maxima of the scatterer are expected to be also periodic,
because the local minima of that of the rectangular aperture are
periodic against sin( dθ ). We utilized this relationship of rectangle
to calculate the size of the scatterer. For the diffraction angle of the
local maximum dmθ , refractive index of air n0, diffraction order m,
and wavelength λ, the width w of the particle is given by

w m n/ sin 2dm0 ( )λ θ= [ ] ( )

3. Computational method

The diffraction pattern changes roughly periodically against sin
( dθ ), where dθ is diffraction angle. The diffraction pattern of a
particle is Fourier transformed after leveling the peak heights of
the pattern. The resulting spectrum has several peaks. The value of
the transverse axis of the peak is candidate of side length. Here
‘spectrum’ is a Fourier transformed diffraction pattern.

Actually, there are several peaks in the spectrum and the
proper peak should be assigned. The complexity of the spectrum
decreases by several pre-treatments for changing the diffraction
pattern into pure sinusoidal one. The first is removal of non-dif-
fracted light. Almost all light is not diffracted by the particle, be-
cause the calculation area is much longer than the particle size. It
does not contribute to the sinusoidal curve. The second is nor-
malization of the local maxima of the diffraction pattern. Eq. (1)
has coefficient 1/kpa, which modifies the pure sinusoidal curve. If
we Fourier transform it directly, the peak of the spectrum is too
complex to assign. After we perform such pretreatments, the
spectrum is still complex. Therefore, before selecting the proper
peak, shape should be identified. The information of the shape
reduces the number of the sides to calculate and it is also useful in
actual measurement. Here, the process is divided into two steps.
The first step is Fourier transformation and shape calculation. The
second is to read the local maxima of the diffraction pattern and
calculate the length of sides as mentioned later. We draw the
calculation scheme in Fig. 1.

At first, we calculate the product sum of the intensity and its
value of transverse axis of the spectrum, and averaged over the
intensity to get the side length. The radar chart of the length and
the incidence angle suggests the real shape as shown in the later.
Now, we know the number of the sides of the shape and the
corresponding angles. The spectrum has many peaks and needs
peak assignment. By calculating product sum of intensity and
length of transverse axis, we escape from this problem. We can
judge the shape from the results. Though the product sum gives us
the value of the side's length, the precision of it is not good. We

can get much more precise value, when we calculate it directly
from the diffraction pattern. However, the process is not simple
and automatic. We used the value of the product sum for the
shape calculation as the first step and assigned the peak of the
spectrum for length measurements as the second step. The process
of calculating the side’s length becomes easy owing to information
of the shape.

We then check the spectrum again. We select the incidence
angles which produce sharp and strong single peaks. If the in-
cidence angle is vertical to the side, the diffracted pattern should
oscillate according to the side length and the oscillation may be
relatively simple. Therefore, the incident light gives distinct peak
in the spectrum. Considering the side length derived directly from
the diffraction pattern, we select the proper peak. There are sev-
eral peaks in the pattern. We read the value of the transverse axis
of the peaks and used Eq. (2). If diffraction order m is more than
one, we averaged w derived from the peaks.

4. Results and discussion

We examine the shapes in Fig. 2. The square has a width v¼3λ,
the isosceles triangle has a depth d¼λ and a width v¼3λ, the
rectangle has a width v¼3λ and a depth d¼2λ, and the scalene
triangle has a depth d¼λ with a¼1.9λ and b¼1.1λ. All of these
units are measured in wavelengths. The refractive index n of the
scatterer is set to 1.5, if there is no mention about it. The incidence
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Fig. 1. Scheme of the calculation for shape and size of a particle.
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Fig. 2. The shapes identified by calculations, v¼3.0 and d¼2.0 for the rectangle;
v¼3.0, d¼1.0, a¼1.1, and b¼1.9 for the triangle.
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