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a b s t r a c t

We study the propagation of quantum states of light in separable longitudinally inhomogeneous wa-
veguides. By means of the usual quantization approach this kind of media would lead to the unphysical
result of quantum noise squeezing. This problem is solved by means of generalized canonical transfor-
mations in a comoving frame. Under these transformations the generator of propagation is a Lewis–
Ermakov invariant in space which is quantized and, accordingly, a propagator consistent with experi-
ments is obtained. Finally, we show that the net effect produced by propagation in these media is a
quantum Gouy's phase with applications in quantum information processing and sensing.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Integrated quantum photonics is an active and prolific area of
research playing a central role in the development of quantum
science due to its scalability and sub-wavelength stability [1].
Major breakthroughs have been recently accomplished in this
field, like quantum interference in a directional coupler and the
operation of a CNOT gate on-chip [2], integrated quantum me-
trology with two- and four-photon entangled states [3], re-
configurable photonic quantum chips for processing and mea-
surement of qubits [4,5], quantum walks and boson sampling in
waveguides [6,7], quantum teleportation on a photonic circuit [8],
continuous-variable entanglement on a quantum circuit [9] and so
on. The continuous advance of this technology depends on the use
of a correct and consistent theory to design the waveguiding ele-
ments which make up the photonic circuits. Quantum propagation
problems have been dealt with in homogeneous media, as shown
in [10] and references therein. These studies provided the back-
ground of the quantum theory of light propagation showing that
the operator which describes correctly the quantum spatial pro-
pagation along an arbitrary direction z is the Momentum operator
^ , since the Hamiltonian approach fails for problems like
dispersive media, counterpropagation and longitudinally

inhomogeneous (LI) media as well [11]. Likewise, this theory has
also been applied to integrated linear and nonlinear coupling de-
vices showing consistent results [11,12].

However, as far as we know, the problem of propagation of
quantum light in separable longitudinally inhomogeneous wave-
guiding media has not been taken into account. These media are
widely used in fiber and integrated optics such as phase shifters,
modal converters, gradual transitions for anti-reflection, and so on
[13–15]; hence the importance of a quantum theory which de-
scribes these devices. The analogous problem in the time domain
is the time dependent quantum harmonic oscillator. This problem
has been thoroughly studied both from mechanical [16,17] and
electromagnetic [18,19] points of view, showing squeezing effects.
The approach most used in the tackle of this sort of problems is
the use of quantum mechanical invariant operators, in particular
the Lewis–Ermakov invariant [20]. On the other hand, in the space
domain, a first approximation to LI media was carried out by
Abram [21] and Glauber and Lewenstein [22], where single optical
discontinuities between homogeneous media were analyzed. In
these studies they showed from energy conservation the different
physical behavior the fields experience from the analogous
mathematical problem of the time dependent quantum harmonic
oscillator, proving that the field quadrature noise does not exhibit
real squeezing, in agreement with experiments.

Therefore, our purpose is to give a consistent approach to the
propagation in these devices where virtual squeezing is avoided.
To this end, we start studying the classical problem which leads to
a z-dependent Momentum. Since the usual quantization approach
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leads to squeezing as in the case of time-dependent problems, but
in this case we know from experiments that it is virtual, we look
for a reference frame which continuously performs a variable
change in the LI media and eliminates this virtual squeezing,
turning out into a proper propagation generator, a quantum Le-

wis–Ermakov-type Momentum operator ^ . From this operator we
will obtain Fock states in the optical-field strength (OFS) re-
presentation and derive the propagator, proving the lack of
squeezing in this representation and the arising of a quantum
Gouy's phase. Furthermore, we will present the particular case of
propagation of a Gaussian quantum state in a waveguide with a
cosine-type LI refractive index, where will be shown that the net
effect of this kind of media on quantum states is the generation of
a quantum Guoy's phase dependent on features of both the media
and the input quantum state, with applications in quantum
technology.

2. Classical analysis of propagation in longitudinally in-
homogeneous waveguides

Our aim is to study the propagation of waveguided modes of
quantum light in dispersion-free and non-magnetic media with
separable inhomogeneous refractive index in an arbitrary direc-
tion of propagation z, given by [13]

n x y z n f x y n h z, , , , 12
0
2 2 2 2( ) = ( ) + Δ ( ) ( )

where the longitudinal h(z) and transversal f x y,( ) parts of the
index are completely independent and n0 and nΔ are constants.
We focus on the separable index problem as it does not show
coupling and therefore radiation modes (losses). From Maxwell
equations, it is easy to show that the transverse components of the
electric field E x y z t, , ,t ( ) obey the vectorial wave equation [23]:
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Let us consider monochromatic guided 1D vector modes with
frequency ωσ represented by vector field solutions with the fol-
lowing factorable complex amplitudes:
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where we have used s for simplicity standing for the modal
numbers ν, μ in each transverse direction, z-dependent complex
coefficients q zc ( )σ fulfilling q z 1c

2∑ | ( )| =σ σ , and electric normalized
transverse complex amplitudes x y,tξ ( )σ corresponding to quasi-TE
(quasi-TM) modes [11], which belong to the homogeneous part of
the refractive index and satisfy
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with βt being the transverse propagation constant. Solutions of
this equation give us the invariant transverse modal structure of
the field. Applying Eqs. (1), (3) and (4) into (2), we obtain
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where q q q /2c c= ( + )σ σ σ
⁎ stands for the real electric field coeffi-
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2 2 2β β( ) = + Δ ( )σ σ is the local propagation constant of

the s-mode and where we have used the approximation E E E,z x y⪡ .
It is important to outline that E 0z = in the case of TE modes, that
is, Eq. (5) is exact for such modes. This propagation equation
clearly suggests a local spatial harmonic oscillator and therefore it
can be directly derived from spatial-type Hamilton equations
where the Hamiltonian is substituted by the Momentum, since it is
the generator of spatial translations [12,21], given by

p z q , 6
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with p q= ′σ σ and prime stands for z-derivative. This result is ana-
logous to that obtained in [18] where time-dependent linear
media was studied. The classical Momentum (6) is equivalent to
the Hamiltonian of a time-dependent harmonic oscillator, with

zβ ( ) playing the role of tω ( ) [20].
Likewise, the solution of Eq. (5) is easily obtained via the use of

the complex electric field q cσ in the following way:
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where ρσ and θσ are real functions obtained by solving:
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with 0oβ β≡ ( )σ σ . Eq. (8) is an Ermakov–Pinney equation with so-
lutions given by [24]
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and where uσ and vσ are linearly independent functions that satisfy
Eq. (5) and have the following initial conditions and Wronskian:

u v0 0 0, 12( ) = ′ ( ) = ( )σ σ

u v0 0 1, 13′ ( ) = ( ) = ( )σ σ

W u v v u 1. 14= ′ − ′ = ( )σ σ σ σ σ

So, the classical wave amplitude changes continuously during
propagation by a factor ρσ , whereas the modal propagation con-
stant is given by β θ˜ ≡ ′σ σ via Eq. (9) where θσ represents the total
phase accumulated in the propagation.

3. Quantization in longitudinally inhomogeneous waveguides

The next step is to quantize the classical Momentum (6). But
before carrying out this step, some considerations have to be taken
into account. Direct quantization of the classical fields qσ and pσ
would lead to a quantized z-dependent Momentum analogous to
the Hamiltonian for a time-dependent harmonic oscillator and,
therefore, following the usual steps, we would have propagation
equations leading to quadrature noise squeezing [16–19]. But in
the study of propagation in LI dielectric media, this approach does
not provide consistent results. As was pointed out by Abram in his
seminal paper about quantization of light in dielectric media [21],
when quantum states propagating in a dielectric are represented
in the basis of free-space photons, they seem to be squeezed, but
they are produced by energy non-conserving terms and then in-
side a dielectric there is no experiment that can detect these
photons. This happens because if we wish to detect photons inside
the medium the fields would experiment an effective refractive
index equivalent to the squeezing parameter and, therefore, a scale
change is necessary. In the same spirit an interesting discussion
about quantization in a dielectric was carried out by Glauber and
Lewestein in [22]. In this study it is stressed that the measurement
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