
Comparison of pulse propagation and gain saturation characteristics
among different input pulse shapes in semiconductor optical
amplifiers

Suchi Barua a, Narottam Das a,b,n, Sven Nordholm a, Mohammad Razaghi c

a Department of Electrical and Computer Engineering, Curtin University, Perth, WA 6845, Australia
b School of Mechanical and Electrical Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
c Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, Iran

a r t i c l e i n f o

Article history:
Received 20 June 2015
Received in revised form
10 September 2015
Accepted 11 September 2015

Keywords:
Finite-difference beam propagation method
Input pulse shapes
Optical pulse propagation
Gain saturation
Semiconductor optical amplifiers

a b s t r a c t

This paper presents the pulse propagation and gain saturation characteristics for different input optical
pulse shapes with different energy levels in semiconductor optical amplifiers (SOAs). A finite-difference
beam propagation method (FD-BPM) is used to solve the modified nonlinear Schrödinger
equation (MNLSE) for the simulation of nonlinear optical pulse propagation and gain saturation char-
acteristics in the SOAs. In this MNLSE, the gain spectrum dynamics, gain saturation are taken into account
those are depend on the carrier depletion, carrier heating, spectral hole-burning, group velocity dis-
persion, self-phase modulation and two photon absorption. From this simulation, we obtained the
output waveforms and spectra for different input pulse shapes considering different input energy levels.
It has shown that the output pulse shape has changed due to the variation of input parameters, such as
input pulse shape, input pulse width, and input pulse energy levels. It also shown clearly that the peak
position of the output waveforms are shifted toward the leading edge which is due to the gain saturation
of the SOA. We also compared the gain saturation characteristics in the SOA for different input pulse
shapes.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, high-speed communication systems and all-
optical signal processing techniques play an important role to
avoid electro-optic conversions which may create data-flow bot-
tlenecks. Semiconductor optical amplifiers (SOAs) are widely used
in many functional applications, such as wavelength conversion,
optical switching, optical signal processing pulse reshaping, and
power limiting. SOAs are the key component for short optical
pulse amplification and optical switching at a very high speed
communications because of their small size, a low switching en-
ergy, non-linear characteristics and ability to integrate with other
optical devices [1–4].

The purpose of modelling an SOA is to relate the internal vari-
ables of the amplifier with external variables, such as the output
signal power and output saturation power [3]. When a short input

optical pulse is injected into the active region of the SOA, stimula-
tion emission takes place resulting in optical signal amplification.
Therefore, the carrier density reduces and causes a drop of the SOA
gain [2]. The amplification rate and gain saturation varies according
to the input pulse shapes. The modified nonlinear Schrödinger
equation (MNLSE) is used in most pulse propagation models that
include the SOA non-linearities [5]. Pulse propagation through an
SOA is strongly dependent on the input pulse shape [6].

The main objective of this paper is to investigate the nonlinear
optical pulse propagation and gain saturation characteristics de-
pending on different types of input pulse shapes and energy levels
in SOAs for high speed communication systems. This analysis is
based on the MNLSE considering the non-linearities in SOA, such
as self-phase modulation (SPM), two-photon absorption (TPA),
group velocity dispersion (GVD), carrier depletion (CD), carrier
heating (CH), spectral-hole burning (SHB), gain spectrum dy-
namics, and gain saturation in the SOA [5,7]. To solve the MNLSE,
the finite-difference beam propagation method (FD-BPM) is used
because of its short convergence time and excellent accuracy of
the simulated results [8–16]. For simulation of pulse propagation
with small propagation steps, FD-BPM is considered as the best
method compared to others [8–14]. In this paper, we have nu-
merically investigated and compared the output waveforms or
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propagated pulses characteristics and the gain saturation char-
acteristics for different types of input pulse shapes in SOAs. The
input pulse shapes were considered as, (i) Secant hyperbolic pulse,
(ii) Gaussian pulse, and (iii) Lorentzian-shaped pulse.

2. Modified nonlinear Schrödinger equation (MNLSE) for SOA
modelling

The theoretical model of short optical pulses propagation in
SOAs will be briefly described in this section. Starting from Max-
well's equations, we reach to the propagation equation of short
optical pulses in SOAs which are governed by the wave equation in
the frequency domain [15,17–22]:
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where, E x y z, , , ω¯( ) is the electromagnetic field of the pulse in the
frequency domain, c is the velocity of light in vacuum and rε is the
non-linear dielectric constant which is dependent on the electric
field in a complex form. By using the slowly varying envelope
approximation and integrating the transverse dimensions, the
pulse propagation equation in SOAs is [15,23]:
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where, V z,ω( )is the Fourier-transform of V t z,( ) representing pulse
envelope, mχ ω( ) is the background (mode and material) suscept-
ibility, mχ ω˜ ( ) is the complex susceptibility which represents the
contribution of the active medium, N is the effective population
density, 0β is the propagation constant. The quantity Γ represents
the overlap/confinement factor of the transverse field distribution
of the signal with the active region as defined in [15].

Using mathematical manipulations [19,23], which includes the
real part of the instantaneous non-linear Kerr effect as a single
non-linear index n2 and by adding the TPA term, the MNLSE for the
phenomenological model of semiconductor laser and amplifiers is
obtained [24].

For this modelling, Eq. (3) [9–14] is used for the simulation of
pulse propagation with different input pulse shapes in SOAs. The
MNLSE uses the complex envelope V z,τ( ) function of an optical
pulse which is given in Eq. (3).
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We introduce the frame of the local time t z v/ gτ( = − ) which
propagates with the group velocity vg at the centre frequency of an
optical pulse. The slowly varying envelope approximation is used
in (3), where the temporal variation change of the complex en-
velope function is very slow compared with the cycle of an optical
field. In (3), V z,τ( ) is the time domain complex envelope function
of an optical pulse and V z, 2τ| ( )| corresponds to the optical intensity
or power, and 2β is the GVD. γ is the linear loss, p2γ is the TPA

coefficient, b n cA/2 0 2ω( = )is the instantaneous SPM term due to the
instantaneous nonlinear refractive index n2 (Kerr's effect),

f20 0ω π( = ) is the centre angular frequency of the pulse, c is the
velocity of light in vacuum, A wd/Γ( = ) is the effective area (d and
w are the thickness and width of the active region, respectively,
and Γ is the confinement factor). gN τ( ) is the saturated gain due to
CD, g0 is the linear gain, Ws is the saturation energy, sτ is the carrier
lifetime, f τ( ) is the SHB function, Pshb is the SHB saturation power,
shbτ is the SHB relaxation time, and Nα and Tα are the line width
enhancement factor associated with the gain changes due to the
CD and CH. gT τΔ ( ) is the resulting gain change due to the CH and
TPA. u s( ) is the unit step function, chτ the CH relaxation time, h1 is
the contribution of stimulated emission and free-carrier absorp-
tion to the CH gain reduction, and h2 is the contribution of TPA.
Finally,A1 and A2 are the slope and the curvature of the linear gain
at 0ω respectively, while B1 and B2 are constants describing
changes in these quantities with saturation. In this simulation, the
gain spectrum of an SOA is approximated by the following second-
order Taylor expansion in ωΔ :
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A1, A2, B1 and B2 as given by (7) and (8). We assumed the same
values of A1, A2, B1 and B2 as for an AlGaAs/GaAs bulk SOA [9–14].

Generally, the fast Fourier transformation BPM (FFT-BPM) is
used for analysis of the optical pulse propagation in optical fibres
by successive iterations of the Fourier transformation and the in-
verse Fourier transformation. In the FFT-BPM, the linear propa-
gation term (GVD term) and phase compensation terms (other
than GVD, first- and second-order gain spectrum terms) will be
separated in the nonlinear Schrödinger equation for the individual
consideration of the time and frequency domain for the optical
pulse propagation. However, in our model, (3) includes the dy-
namic gain change terms, i.e., the first- and second-order gain
spectrum terms which are the last two terms of the right side in
(3). Therefore, it is not possible to separate (3) into the linear
propagation term and phase compensation term, and it is difficult
to calculate (3) using the FFT-BPM. For this reason, we have used
the FD-BPM [9–14] to solve this MNLSE.

3. Simulation results and discussion

In this section, simulation results of single pulse propagation
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