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a b s t r a c t

AWeisskopf–Wigner theory has been used to investigate the spontaneous emission of a two-level atom
placed in a photon superfluid. It is found that the atom decays exponentially. However, the atomic decay
rate changes periodically with the position of the atom and it is minimal when the atom is located at the
wave nodes. The largest decay rate of the atom in photon superfluid has the same order of magnitude as
it is in vacuum of free space. Moreover, the analytical result shows that the decay of an atom in photon
superfluid, compared with that in planar cavity without photon superfluid, will be inhibited. The physical
origin of atomic decay inhibition is also discussed.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, much attention has been paid to study spon-
taneous emission [1–4], which arises from the interaction of an
atom with the vacuum field modes. It has been long recognized
that when an atom is placed in a new environment instead of the
vacuum of free space, the spontaneous emission can be modified.
There has been substantial research on spontaneous emission of
atoms placed in different electromagnetic environments, such as
photonic crystals, Kerr nonlinear blackbody, and microcavities [5–
9]. Generally speaking, it has been shown that spontaneous
emission can be suppressed or enhanced in a cavity [10–12].

An interesting environment called photon superfluid, a new
state of light, has attracted growing attention of scientists. Photon
superfluid is a manifestation of Bose–Einstein condensation and is
observed firstly by Klaers et al. [13] by using a macroscopic optical
cavity containing a dye solution. Thereafter, a large amount of
papers concerning photon appears both theoretically [14–17] and
experimentally [18,19]. In order to create a stable luminous fluid, it
is crucial to give a finite effective mass to the photon. A simple
strategy for this purpose involves a spatial confinement of the
photons by metallic or dielectric planar mirrors [20]. A first ela-
boration of the concept of photon superfluid dates back to the
work of Brambilla et al. [21] and Staliunas [22]. In such an en-
vironment almost all photons occupy the ground state. Compared
with usual electromagnetic environment, photon in superfluid is
not three but two dimensional. Therefore, it is interesting to study

the spontaneous emission of atoms immersed in this new photo-
nic state. In this paper, we aim to investigate spontaneous emis-
sion of a two-level atom placed in a photon superfluid. The atomic
decay rate is obtained by using quantum field theory. It is found
that an atom placed in different positions decays in different rates.
Concretely, its decay rate is very small (almost tends to zero) when
it is located at the wave nodes. Meanwhile, the order of magni-
tudes of the maximum of the depopulation is the same as the one
in vacuum of free space. Moreover, the analytical result shows that
the decay of an atom located at photon superfluid, compared with
that at the planar cavity without superfluid, will be inhibited.

This paper is structured as follows. First, we establish a model
for photon superfluid of two-dimensional photon gas. Subse-
quently, we use the proper vector potential between two metal
mirrors to deduce the Hamiltonian of the atom-photon system.
Then we investigate the time-evolution properties of the two-level
atom. A summary is given at last.

2. Microcavity resonator and Hamiltonian of two-dimensional
photon fluid

It is well known that in normal blackbody, the chemical po-
tential of the photon system is vanishing. In other words, the
number of photons will change with temperature. However, one of
the preconditions of BEC is that the chemical potential should not
be vanished. Therefore, for blackbody radiation, the photons will
disappear in the cavity walls instead of occupying the ground
state. In 1999, in order to solve these problems and get a photon
superfluid, Raymond Y. Chiao et al. [23] theoretically established a
model of photon superfluid by confining photons in two planar
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mirrors. The distance between mirrors is small enough to make
the longitudinal modes of photons frozen out. Subsequently, the
photons are effectively two-dimensional. In their theory, almost all
of the photons condense at the ground state and the chemical
potential does not vanish.

In this paper, following Raymond Y. Chiao et al. [23], we con-
sider photons are confined in two planar mirrors. Because the
frequency spacing between adjacent longitudinal modes is large
enough, it is appropriate to assume that longitudinal mode of
photons is frozen out and their transverse modes remain free,
which makes the photon fluid effectively two-dimensional. At low
temperature, photons condense into ground state. However, there
is a little depletion due to the weak interaction between photons.
Precisely speaking, there may produce photons with momentum κ
and κ− respectively during two zero-momentum photon
interaction.

Because the longitudinal mode of photons kz
n
L

= π is frozen,
where n is a fixed integer and L is the distance between mirrors, it

is reasonable to assume that k k kx y z
2 2+ ⪡ (it implies that

p p px y z
2 2+ ⪡ ) and rewrite the energy of photon to be

E p c p p p mc
p

m2
, 1x y z

T2 2 2 1/2 2
2

( ) = [ + + ] ≅ + ( )

where m n
Lc

= π is the effective mass of two-dimensional photon,

p p p,T x y= ( ) is two-dimensional momentum and p p px y
2 2

T
= + . By

redefining the zero of the energy, we could only consider the ef-

fective kinetic energy
m2

2
κε ( ) = κ( ) , where pTκ = .

Following Raymond Y. Chiao's work [23] and reference [20], the
Hamiltonian of the field can be expressed as
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where aκ
λ† and aκ

λ are the creation and annihilation operators of
photons with momentum κ and polarization E M,λ λ( = re-
presents the two types of polarization), respectively. And they
satisfy the Bose commutation relations

a a a a a a, , , , 0. 3q q q q
1 2

, 1, 2
1 2 1 2δ δ[ ] = [ ] = [ ] = ( )κ κ κ κ

λ λ
λ λ

λ λ λ λ† † †

The first term of the Hamiltonian represents the energy of the free
photon system and the second term represents the interactional
energy V κ( ) between photons. Because the system is open and the
photons will get lost, we should allow the number of photons
fluctuates around a constant value. A standard way to describe this
is to use Lagrange multiplier [15], specifically, the corresponding
Hamiltonian is a a,μ− ∑κ κ κλ

λ λ† , with μ being the chemical potential.
At a very low temperature, there exists a BEC and we denote

the number of photons with zero momentum as N0, here N0 is big
enough. Since the interaction is weak, we shall suppose that N0

will remain the same number. Actually, in the experiment, N0

depends on the intensity of the incident laser beam. Now let us
consider the case that zero momentum operators a0

† and a0 act on
the ground state N0 0ψ ( ) :
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Here we use the fact that N 10⪢ . The above result implies that when
acting on the zero momentum state, both a0

† and a0 could be re-
garded as a c-number N0 . Therefore, the total Hamiltonian can be
rewritten as
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where N V N0 00
1
2 0 0

2ε ε′( ) = ( ) + and N V0κ κ κε ε′( ) = ( ) + ( ). Here the
interaction term between two non-zero momentum photons has
been abandoned. And we obtain
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In order to obtain the quadratic-form Hamiltonian, following
Bogoliubov [24,25], we make a canonical transformation

b u a v a
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where bκ
λ and bκ

λ† are respectively the annihilation and creation
operators of the quasi-particles. Furthermore, uκ and vκ obey the
relation u v 12 2− =κ κ , which implies the Bose commutation rela-
tions of bκ

λ and bκ
λ†,
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Specifically, the diagonal form Hamiltonian of Eq. (5) can be
written as

⎛
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here ω̃κ represents the energy of a quasi-particle with mo-
mentum κ. After substituting Eq. (7) into Eq. (5) and comparing
the result with the diagonal form Eq. (9), we get the condition for
diagonalization
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By solving Eq. (10), it is easy to obtain Bogoliubov dispersion re-
lation

N V
m m4

.
11

2
0

4

2
κω κ κ˜ = ( ) ( ) + ( )

( )κ

3. Interaction between the field and two-level atom

Here, we consider a two-level atom immersed in the photon
fluid, as seen in Fig. 1. Let a being its high-energy eigenstate with

Fig. 1. Schematic of the optical microcavity. The cavity consists of two planar
mirrors which is fulfilled with dye solution. An atom is immersed inside the
microcavity.
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