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a b s t r a c t

A critical issue in the usage of permutation entropy (PE) for the complexity measure is the selection of
the embedding time delay. It is known that PE evaluated with multiple delays can help us gain additional
insight into the unpredictability degree at different timescales. In this paper, we investigate the un-
predictability degree of the optical chaos in a special type of small networks of semiconductor lasers
(SLs) using permutation entropy. These laser systems, such as SLs subject to delayed self-feedback,
mutually delay-coupled SLs, and a ring configuration consisting of three unidirectionally delay-coupled
SLs, exhibit similar correlation properties characterized by autocorrelation function. The results show
that, for a given embedding time delay, the curves for the PE follow the same trends upon monotonically
increasing the coupling rate, regardless of how complex the system structure actually is. Furthermore,
the results corroborate the effectiveness of PE as an unpredictability measure for small networks con-
sisting of SLs with a single coupling delay, which can be extracted from the intensity autocorrelation
function. Finally, we show an example for generating unpredictability-enhanced optical chaos based on
small networks of SLs.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Bandt and Pompe in 2002, permu-
tation entropy (PE) [1] has been widely used to quantify the un-
predictability of chaotic time series in the literature [2–4]. This
unpredictability measure for time series relies on comparison of
neighboring values and can be directly applied to any nonlinear
dynamical systems. Interestingly, PE has been successfully applied
to optoelectronic systems, e.g., chaotic semiconductor lasers (SLs).
Rosso et al. have demonstrated that it is possible to detect the
presence of small-amplitude message embedded in chaotic car-
riers via PE [5]. For SLs with delayed self-feedback [Fig. 1(a)], Zu-
nino et al. have found that PE evaluated at specific time scales,
feedback time delay, gives valuable information about the degree
of unpredictability of the chaotic laser dynamics [6], in good
agreement with the Kolmogorov–Sinai entropy; Soriano et al. have
demonstrated that the estimation of PE is able to identify char-
acteristic time scales present in the chaotic dynamics [7]; Toomey
and Kane have obtained the PE maps of the dynamical un-
predictability at different time scales [8]. Besides, Xiang et al. have

reported the chaotic unpredictability of vertical-cavity surface-
emitting lasers with polarized optical feedback based on the es-
timation of PE [9,10]. On the other hand, PE has been proposed to
analyze time-delay signatures in the optical chaos [11,12].

Despite many papers in the literature deal with the validity of
PE for quantifying the unpredictability degree of nonlinear time
series, a comparison of a special type of small networks of SLs of
Fig. 1 in terms of the estimation of PE has not yet been presented.
These three configurations are of great interest, since the config-
uration in Fig. 1(a) is the simplest chaos generator, i.e., SLs with
delayed self-feedback (a coupling time delay τ), and has been most
widely investigated in the literature [6–8,13], while those in Figs. 1
(b) and (c) represent its variations, with the purpose of improving
the quality of chaotic sources [14–17], where Fig. 1(b) corresponds
to mutually delay-coupled SLs with a coupling time delay τ/2 and
(c) represents a ring configuration consisting of three uni-
directionally delay-coupled SLs with a coupling time delay τ/3. In
fact, the dynamics and correlation properties of these three delay-
coupled oscillators have been already studied (called small net-
works in this paper) [18,19], however, a systematical comparison
of the unpredictability variations based on PE in this special type
of small networks may be valuable for the potential applications of
optical chaos, such as chaos-based communications and random
bit generators [20–25].
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In the following, this point is addressed in detail. In Section 2,
the Lang–Kobayashi (L–K) equations of the configurations shown
in Fig. 1 are presented [26]. And PE is briefly introduced to quan-
titatively evaluate the unpredictability degree of chaotic signals.
Section 3 is devoted to the numerical results of the systematical
comparison. Finally, conclusions are given in Section 4.

2. Theory

2.1. Rate equations

For configuration in Fig. 1(a), the L–K model can be used, while
for describing those in Figs. 1(b) and (c), the modified L–K model
should be used, where the self-feedback term is replaced with
external optical injection term.

The L–K rate equations for the complex slowly varying

amplitude of the electric field E(t) and the carrier number inside
the cavity N(t) for the laser can be given by [18,19]
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the optical gain of laser j, and Ω is the frequency of the free-
running laser. For a single laser with self-feedback M 1( = ),
j k 0= = ; for mutually delay-coupled SLs M 2( = ), j k, 0, 1( ) = ( )
and j k, 1, 0( ) = ( ), respectively; for a ring configuration consisting
of three unidirectionally delay-coupled SLs M 3( = ), j k, 0, 2( ) = ( ),
j k, 1, 0( ) = ( ), and j k, 2, 1( ) = ( ), respectively. The parameter

g 1.5 10 ps8 1= × − − is the differential gain coefficient and
s 5 10 7= × − is the saturation coefficient, N 1.5 100

8= × is the
carrier density at transparency, α¼5 is the linewidth-enhance-
ment factor, 2pτ = ps is the photon lifetime, 2Nτ = ns is the carrier
lifetime, γ is the coupling rate and will be specified later, τ¼1 ns is
the feedback (coupling) time delay, and J J1.5 th= is the pump
current (with Jth being the threshold current of the solitary laser).
We assumed that the lasers involved have the identical parameters
(e.g, the frequency detuning was not considered) and neglected
the influence of noise.

The intensity time series of the laser was obtained by in-
tegrating Eqs. (1) and (2) using a fourth-order Runge–Kutta
method with a time step of t 0.1Δ = ps. In our simulations, we
followed the method introduced by Zunino [6], i.e., ten realizations
were analyzed by taking into account the influence of statistical
properties of the chaotic time series. Each one contains N 105=
data points with a sampling period of 1 pssΩ = .

Fig. 1. (a) SL with delayed self-feedback, (b) two bidirectionally delay-coupled SLs,
and (c) a ring configuration of three unidirectionally delay-coupled SLs. τ stands for
feedback (coupling) time delay.
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Fig. 2. Intensity time series (left column) and ACF plots (right column) for the SL with delayed self-feedback (first row), two bidirectionally delay-coupled SLs (second row),
and a ring configuration of three unidirectionally delay-coupled SLs (third row). (a) and (b) 30 ns 1γ = − ; (c)–(f) 90 ns 1γ = − .
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