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a b s t r a c t

According to the vectorial Rayleigh–Sommerfeld diffraction integral formulas, analytical expressions for
the elements of 3�3 cross-spectral density matrix of polarized Rectangular Multi-Gaussian Schell-Model
(RMGSM) beam’s nonparaxial propagation in free space are derived, and the paraxial analytical ex-
pression has also been presented as a special case of nonparaxial propagation. Its statistical properties,
including the distributions of spectral density, spectral degree of coherence, and spectral degree of po-
larization of nonparaxial RMGSM beam are numerically demonstrated. Results reveal that the statistical
properties of RMGSM beam’s nonparaxial propagation in free space are closely related to the initial
beam’s transverse width σ and correlation widths xδ and yδ . These characteristics of RMGSM beam might
be useful in optical material surface processing, imaging, and free space optical communication.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since Gaussian Schell-Model (GSM) beam was firstly in-
troduced by Wolf and Collett [1], researches about partially co-
herent beams have been intensively examined [2–9]. Recently, a
novel named Rectangular Multi-Gaussian Schell-Model (RMGSM)
was introduced by Korotkova [10], which is different from other
Schell-Model class of partially coherent beams by virtue of its flat
rectangular intensity distribution in the far field [11–14]. The un-
ique feature of RMGSM beam has attracted a lot of attention, and
researches about RMGSM beam were reported successively, in-
cluding its propagation in atmospheric turbulence, scattering on a
deterministic medium and fractional Fourier transforms, etc. [15–
17].

As we know, for an electromagnetic beam propagation in free
space, its electric vector E can be obtained by simplified calcula-
tion within the framework of classical electromagnetic theory. The
premise of such simplification is paraxial approximation [18],
namely, the longitudinal component Ez of electric vector is awfully
small and could be ignored. However, the paraxial approximation
is no longer valid for a beam with large divergence angle or small
spot size that is of the order of light wavelength. In this case the
electric vector E should be determined by strictly solving wave
equations [18,19]. In this work, we use the vectorial Rayleigh–

Sommerfeld diffraction integral formulas to solve the nonparaxial
propagation of RMGSM beam and have derived the analytical ex-
pressions for the elements of 3�3 cross-spectral density matrix of
RMGSM beam, and then its nonparaxial propagation properties
would be investigated by numerical simulations. Results show that
the distributions of spectral density, spectral degree of coherence
and spectral degree of polarization of RMGSM beam’s nonparaxial
propagation in free space would be influenced by the initial
beam’s transverse width σ and correlationwidths xδ and yδ along x
and y directions. These characteristics of RMGSM beam might be
useful in optical material surface processing, imaging, and free
space optical communication.

2. Nonparaxial propagation of a RMGSM beam in free space

According to the vector Rayleigh–Sommerfeld diffraction in-
tegral formulas, nonparaxial propagation of a light beam in the
half space z 0> can be obtained, and each component of the
vector beam in an arbitrary plane z can be expressed as [20]
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where E x y, , 0x y, 0 0( ) are transverse components of the E vector in
the input plane z 0= , and E x y z, ,x y z, , ( ) are components of the E
vector along x, y, and z directions in an arbitrary plane z, respec-
tively. r i j kx y z= + + , i jx y0 0 0ρ = + , here i, j and k are the unit
vectors in x, y and z directions, respectively.
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here k 2 /π λ= is the wave number, and λ is the incident wave-
length. When r 0ρ λ− > > , r 0ρ− can be approximately ex-
panded into [21]
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On substituting from Eq. (4) into Eqs. (1a)–(1c), one obtains
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Assuming that an incident field of RMGSM beam is polarized in
the x direction, its cross-spectral density function in the source
plane can be defined by [10]
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where i jx y10 10 10ρ = + and i jx y20 20 20ρ = + are two arbitrary
transverse position vectors in the source plane,
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being

binomial coefficients, M is the index of RMGSM beam, σ is the
transverse beam width of the source, and xδ and yδ are the

correlation widths of the source along x and y directions,
respectively.

Let us consider a partially coherent beam of nonparaxial pro-
pagation whose second-order statistics properties may be char-
acterized by the 3�3 cross-spectral density (CSD) matrix

W z, ,1 2ρ ρ( )
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where, the element of the matrix is given by

W z E z E z x y z, , , , , , , , , 81 2 1 2( )ρ ρ ρ ρ α β( ) = *( )⋅ ( ) ( = ) ( )αβ α β

here E z,x ρ( ), E z,y ρ( ) and E z,z ρ( ) represent the components of the
random electric vector along x, y and z directions, respectively. The
asterisk denotes the complex conjugate and the angular brackets
stand for ensemble average.

Substituting Eqs. (5a)–(5c) into Eq. (8), one obtains the ele-
ments of 3�3 CSD matrix of the vector field in output plane:
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Substituting Eq. (6) into Eq. (9), the element of CSD can be
written as
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