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a b s t r a c t

We investigate analytically and numerically the modulational instability (MI) and propagation properties
of light in nonlocal media with competing cubic–quintic nonlinearities where the response functions are
assumed to be equal. By using the linear stability analysis, the generic properties of the MI gain spectra
are demonstrated for the exponential and rectangular response functions. Special attention is paid to
investigate the competition between the spatial scale of the cubic and quintic nonlinearities. For media
with exponential response function, we have obtained the range of the wave numbers where instability
occurs. It is found that the increase in the absolute value of the quintic nonlinearity suppresses the
instability in the regime where the cubic nonlinearity prevails over the quintic one and promotes its
development in the opposite case. For media with negative response function, additional MI bands are
excited at higher wave numbers when the width of the nonlocal response function exceeds a certain
threshold. In the regime where the quintic nonlinearity is dominant, the increase in the absolute value of
the quintic coefficient leads to the enhancement of the gain value and the movement of the maximum
gain to higher wave numbers. On the other hand, in the case of the predominance of the cubic non-
linearity, the position of the maximum gain bands move to lower wave numbers and MI domain be-
comes increasingly narrows when the quintic term increases. The numerical simulations fully confirm
our analytical results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently initiated theoretical and experimental studies of
nonlocal nonlinearities revealed many novel features in the pro-
pagation of spatial solitons including the suppression of their
modulational [1] and azimuthal [2] instabilities. Modulational in-
stability (MI) in nonlinear media is a destabilization mechanism
that produces a self-induced breakup of an initially continuous
wave into localized (solitary wave) structures. This phenomenon
was predicted in plasma [3,4], nonlinear optics [5,6], fluids [7], and
atomic Bose–Einstein condensates [8,9]. MI of continuous waves
can be used to generate ultrahigh-repetition-rate trains of soli-
tonlike pulses [10,11]. It is common knowledge that MI is absent in
a defocusing Kerr medium and present as a long-wave instability
with a finite bandwidth in a focusing Kerr medium [12].

During the past decade, a novel type of nonlinearity, nonlocal
nonlinearity, with the refractive index change of a material at a
particular location is determined by the intensity in a certain
neighborhood of this location [1], and was shown to stabilize
completely the high-dimensional vortex soliton [13]. It appears
that nonlocality is an inherent property of thermal media [13,14],
nematic liquid crystals [15], atomic vapors [16], and Bose–Einstein
condensates [17], etc. The nonlocal nonlinearity also exists in li-
quid infiltrated photonic crystal fibers [18], which supports the
existence of nonlocal gap soliton [19]. Another very general im-
portant class of nonlocal materials is materials with quadratic
nonlinearity [20], which has been shown that the nonlocal nature
of the quadratic nonlinearity can describe soliton pulse compres-
sion [21], the exotic X-waves [22], and analytically give the limits
of the achievable pulse length [23]. The MI properties of the plane
waves of the nonlocal model for 2χ ( ) materials were investigated in
detail in [24]. Nonlocality appears to have a significant effect on
propagation of beams and their localization. For instance, it can
suppress transverse instability [25] of optical waves and prevent
the catastrophic collapse of self-focusing beams in nonlinear
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media [26].
Recently, nonlocal media with competing nonlinearities have

drawn much attention [27,28]. Competing nonlinearities occur in
systems where few different physical processes contribute to the
overall nonlinear response. This is, e.g., the case of Bose–Einstein
condensates with simultaneous local and long range bosonic in-
teraction [29] or nematic liquid crystals with comparable thermal
and orientational nonlinearities [27]. It has been shown that
competing nonlinearities can stabilize many complex soliton
structures, which are otherwise unstable in a medium with one
type of nonlocal nonlinearity [30,31]. The competing nonlocal
nonlinearities can also destabilize dark soliton state [32] and en-
able coexistence of dark and bright spatial solitons [28]. Nonlinear
light properties in nonlocal media with competing nonlinearities
were also investigated and it was shown that the interplay of fo-
cusing and defocusing nonlocal nonlinearities leads to attraction
or repulsion of solitons depending on their separation distance
[33]. However, most of the aforementioned studies concentrate on
the simplest model of nonlocal Kerr response. The concept of
competing nonlinearities has been also discussed in quadratic
media with second-order and Kerr nonlinearities [34]. Early works
have found that competition between those nonlinearities arrests
collapse [35] and stabilizes solitons [36]. By using an exact Floquet
technique to find the MI gain spectrum in 2χ ( ) materials with
general quasi-phase matching gratings, it was found that the
periodicity can drastically alter the gain spectrum but never
completely removes the instability [37]. There are also nonlocal
media whose nonlinear responses should take into account po-
tential saturations of the nonlocal nonlinearity, such as atomic
vapors [38,39]. Particularly, Mihalache et al. [40] introduced a new
phenomenological model for nonlocal media featuring cubic–
quintic nonlocal nonlinearities. Since the cubic–quintic non-
linearity can be regarded as a power-law expansion for saturable
nonlinearity, it can serve as an approximate model describing
beam propagation in nonlocal media with a saturation of the
nonlinear response.

In the present work we will study the effect of the quintic
nonlinearity on the stability of plane wave. While many previous
papers consider only competiting cubic nonlocal media, we will
deal here with the case of competing cubic–quintic nonlinearities.
We will consider two practically relevant models for the nonlocal
systems. We will use the exponential response function as ex-
ample of response functions with positive-sign bands and the
rectangular response function whose Fourier transform has ne-
gative-sign bands. The remainder of the article is arranged as
follows. In Section 2, we present the model understudy and the
stability analysis of the plane wave. In Section 3, the results of MI
gain and the nonlinear development of the MI are investigated in
non-Kerr media with exponential response function. Section 4
presents the results in non-Kerr media with rectangular response
function. Finally, Section 5 concludes the paper.

2. Model and linear stability analysis

The propagation of an optical beam along the z-axis in non-
Kerr media with nonlocal nonlinearities is governed by the non-
linear Schrödinger (NLS) equation
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where the nonlinear refractive index change of the media can be
represented by the following phenomenological model [40]:
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Here x is the transverse coordinate, u x z,( ) is the complex envelope
amplitude, α1 represents the strength of the nonlocal cubic non-
linearity and α2 is the relative strength of the nonlocal component
of the nonlinear response, and its positive (negative) sign re-
presents the self-focusing (self-defocusing) quintic nonlinearity.
The form of the convolution integrals represents the nonlocal re-
sponse functions, which obey the normalization condition
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.

In general, the particular form of the response function is de-
termined by the specifics of the physical process responsible for
the nonlinearity of the optical medium. For instance it can be
shown that for the reorientational nonlinearity of nematic liquid
crystals [41] and general diffusion type nonlinearities [42], the
nonlocal response is an exponential. For parametric interaction,
the response function can also be periodic in certain regimes of
the parameter space [1]. The generic properties of the different
types of response functions have been studied by Wyller et al. in
terms of MI and it was shown that, in general, all types of localized
response functions have the same generic properties, provided
their Fourier transform is positive-definite [43]. Following [47], we
will use for illustration the exponential response function
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as examples of response functions with sign-definite Fourier
images, and the rectangular response function
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whose Fourier transform has negative-sign bands. Here we have
introduced the spatial Fourier transform of the response function

as R k R x ikx dxexp1,2 1,2∫^ ( ) = ( ) ( )
−∞

∞
. The coefficients s1 and s2 de-

termine the corresponding nonlocality ranges of the cubic and
quintic nonlinearities.

The fundamental framework of MI analysis relies on the linear
stability analysis, such that a continuous wave (CW) solution is
perturbed by a small amplitude or phase perturbation satisfying
the condition a z x P, 2

0| ( ) | ≪ | |, and then study whether the per-
turbation amplitude grows or decays with propagation. The non-
local NLS equation (1) permits exact CW solutions of the form

u z x P ik x i z, exp , 50 0 0ω( ) = ( − ) ( )

where P0, k0 , and ω0 are linked through the nonlinear dispersion
relation

k P P . 60
1
2 0

2
1 0 2 0

2ω α α= − − ( )

Following the procedure listed in [47], we obtained the following
equation for the stability of the CW:
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where we have defined the parameter α as
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k denotes the spatial frequency, R k1
^ ( ) and R k2

^ ( ) are the Fourier
spectra of R x1( ) and R x2 ( ). The general dispersion relation
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