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a b s t r a c t

We consider two entangled atoms, each of which is embedded in a coherent photonic-band-gap (PBG)
reservoir. The effect of the atomic embedded position on the entanglement of the two-atom system is
studied. We find that the embedded position of the atom plays an important role in the dynamics of
entanglement. The variation of the atomic position can lead to the shift between entanglement sudden
death and the entanglement trapping. We also consider the entanglement transfer between different
subsystems. Our results could be applied to manipulation of entanglement in nanostructured materials.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Photonic crystals [1,2] are periodic dielectric structures which
can exhibit full PBGs. When atoms are embedded in photonic
crystals, it is possible to realize key solid-state quantum informa-
tion processing (QIP) tasks, such as entangling quantum systems in
a controlled fashion [3]. Previous studies have shown that en-
tanglement trapping for two atoms coupled to a PBG reservoir can
be realized [4–6], and the entanglement can be controlled by the
position of the atomic upper level [7] and the dipole–dipole in-
teraction between atoms [8]. Moreover, the non-Markovian atom–

field interaction in PBG reservoirs can lead to controlled en-
tanglement between the atom and the reservoir modes [9].

In this paper we propose a different point of view on control-
ling the entanglement through changing the relative position of
the embedded atom. It originates from the fact that the variation
of the atomic position would lead to the change of photon–atom
coupling strengths [10], which effects the spontaneous emission
spectrum and optical properties of atoms [11]. We consider two
entangled atoms, each coupled to a coherent two-band PBG re-
servoir, which depends on the embedded position of the atom. We
highlight the effect of atomic position on the entanglement dy-
namics of the two atoms. A detailed asymptotic analysis shows
that the variation of the atomic position would lead to significant
changes of entanglement distribution. When the atomic transition

frequency is located at the band edge, the entanglement could
change from entanglement sudden death (ESD) to entanglement
trapping with little variation of the atomic embedded position.
The accompanied dynamics of entanglement among other bi-
partite subsystems is also studied. Our results would be useful for
experimental exploration of controlled entanglement in quantum
systems composed of quantum dots or Rydberg atoms in PBG
materials.

This paper is organized as follows. The physical model is given
in Section 2. In Section 3, the effects of the atomic position on the
entanglement dynamics of the two-atom system are studied. In
Section 4, we study the entanglement transfer between different
subsystems. We summarize our results in Section 5.

2. Physical model

We consider two entangled qubits A and B embedded, re-
spectively, in two uncorrelated double-band photonic crystals a
and b. Additionally, we assume that the subsystems Aa and Bb are
identical. The qubit can be assumed to be a two-level atom with
the ground state 0 and the excited state 1 . The Hamiltonian, in
the rotating-wave approximation, for each local subsystem is
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whereω0 is the atomic transition frequency, r is the location of the
embedded atom, aμ (aμ

†) and b bl l( )† are the annihilation (creation)
operators for the upper and lower band reservoirs, respectively.
The spatial dependence coupling constant can be given by [14,15]
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where V0 is the quantization volume, ud and d0 are the unit vector
and the magnitude of atomic dipole moment. The eigenmodes
E rl ( )μ ( ) can be characterized by Bloch modes, which varies from
point to point within a unit cell of the photonic crystal. Here, we
assume that the eigenmodes are [11]
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where rθ ( ) is the angle parameter seen by the atom located at r, e
and Ek are the unit vector and the amplitude of the electric field
with wave vector k. From the above equation, we can find that the
fields of the double-band reservoir are two coherent modes with
phase difference /2π . Thus, the coupling constants can be re-
written as g gr rcosu k( ) ( )θ≅ and g gr rsinl k( ) ( )θ≅ with real con-
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Near the two band edge frequencies, the dispersion relation-
ship is
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where k0 is wave number corresponding to the band edge, c c1 2ω ( ) is
the upper (lower) band edge frequency and A k j/ 1, 2j c 0

2
jω= ( = ).

The corresponding band-edge density of states takes the form
[16,17]
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with the Heaviside step function xΘ ( ). From the above equations,
we can find that the density of states diverges at the edge fre-
quency. Thus, the atom–reservoir interaction within PBG materials
is highly non-Markovian [18]. In order to solve the problem of the
non-Markovian dynamics, we use the discretization method [19].
The core of this method is to divide the density of modes into two
parts: the discrete part which is near the band edge frequencies
and the perturbance part which is far from the band edge. More
specifically, the density of modes near the band edge is replaced
by a finite (but large) number of discrete harmonic oscillators,
while the rest of the mode density can be treated perturbatively.
For the discrete part, we should obtain the frequencies and the
atom-field coupling constants of the discrete oscillators. The
differential forms of Eqs. (6) and (7) are
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for upper and lower band reservoir, respectively.
The coupling constant to the discrete modes of the two-band

reservoir can be found by integration of Eqs. (8) and (9),
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where v1 2ω ( ) is the upper (lower) limit of the discretized part of the

density of states. g r / 1/u c
2
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2

2 2ρ ω β π ω ω( ) ( ) = ( )[ − ] [11], where β is the effective
coupling between the atom and the PBG reservoir. The detailed
evolution of β is shown in Ref. [20]. We thus find
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where N is the number of discrete modes.
We assume that at time t¼0, the atom is in the excited state 1

and the two reservoir modes are in the vacuum states 0m
˜ and 0j

˜ ,

respectively. The state vector of the system is therefore
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where the radiation state 0, 1 , 0 0, 0 , 1m j m j| ˜ ˜ 〉( ˜ ˜ ) accounts for the
mode of upper (lower) band reservoir with frequency m jω ( ) having
one excitation.

The equations for the amplitudes are governed by the
Schrödinger equation, and after eliminating [18] the off-resonant
modes with frequency v1ω ω> and v2ω ω< , we obtain
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By numerically solving the above set of equations, we shall analyze
the population and entanglement dynamics of the two-qubit
system.
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