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a b s t r a c t

Conventional light focusing, i.e. concentration of an extended optical field within a small area around a
point, is a frequently used process in Optics. An important extension to conventional focusing is the
generation of the annular focal field of an optical beam. We discuss a simple optical setup that achieves
this kind of focusing employing a phase plate as unique optical component. It is assumed that the an-
nular focal field is modulated by an azimuthal phase of integer order q that converts the field in a ring
vortex. We first establish the class of beams that being transmitted through the phase plate can be
focused into a ring vortex. Then, for each beam in this class we determine the plate transmittance that
generates the vortex with the maximum possible intensity, which is referred to as optimal ring vortex.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Light focusing, one of the processes more employed in optics, is
usually realized by a lens. An infinitely small focal point cannot be
achieved in free space beam propagation. Even with large aperture
lenses, and infinitely extended beams, the minimum focal field
size is in the order of half the wavelength [1]. Here we discuss
focusing of monochromatic light in an annular focal field, as-
suming that it is modulated by an azimuthal phase of arbitrary
integer order q. The inclusion of the topological charge transforms
the focal field in a ring vortex (RV). This type of structured field
can be useful in several applications, e.g. optical trapping with
orbital angular momentum transference [2–4], lithography [5,6],
high-resolution fluorescence microscopy [7], quantum entangle-
ment [8–10], and vortex coronography [11,12].

As occurs in conventional focusing, the generation of an in-
finitely narrow RV [13–16] is impossible. Therefore, it is important
to establish the optimal approximation to this field that can be
physically implemented. We consider that the optimal RV gener-
ated by a given optical beam is the one with the maximum pos-
sible intensity. The maximum intensity in RVs implies other at-
tributes, as narrow transverse section and high intensity gradient
that may offer advantages in different applications of such fields.

The generation of an optimal RV at the Fourier domain of a
phase diffractive element, which is illuminated by a Gaussian
beam (GB), has been recently reported [17]. In the present com-
munication we discuss the simplest method for annular focusing,
with arbitrary integer order topological charge, of an input beam.

This method employs a phase plate as unique optical component,
which modulates the complex amplitude of the beam. The RV is
obtained, by free propagation of the modulated beam, at a specific
distance from the plate. In Section 2, as first step, we establish the
class of beams that can generate a RV using this simple method.
Then, we determine the phase plate transmittance required to
achieve the optimal annular focusing of the beams in this class. In
Section 3 we illustrate the features of optimal RVs, employing both
numerical simulations and experiments. In Section 4, we present
final remarks and conclusions.

2. Theory

To discuss annular focusing of a beam we refer to the setup
depicted in Fig. 1. In this setup, the input beam (B) is passed
through a phase plate (PP), and the RV is generated, by free pro-
pagation of the transmitted beam, at a distance z from the plate.

For our analysis, the optical fields are expressed in polar co-
ordinates (ξ,ϕ) at the plate plane and (r,θ) at the focal field plane.
The complex amplitude of a generic RV, with integer topological
charge q, is

h r F r iq, exp , 1θ θ( ) = ( ) ( ) ( )

whose radial factor F(r) is specified below. Considering that the RV,
with the separable form in Eq. (1), is obtained by free propagation
of the field transmitted by the plate, it is easy to prove that this
field must have the separable form

f a exp i exp iq, , 2ξ ϕ ξ β ξ ϕ( ) = ( ) [ ( )] ( ) ( )

where the amplitude a(ξ) is a non-negative function and β(ξ) is a
radial phase function to be determined. This result is obtained
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using either the exact or the paraxial scalar field propagation.
Now we assume that the complex amplitude of the beam that

illuminates the phase plate is g(ξ,ϕ)¼│g(ξ,ϕ)│exp[iα(ξ,ϕ)], with
amplitude │g(ξ,ϕ)│ and phase α(ξ,ϕ). Thus, denoting the phase
plate transmittance as p(ξ,ϕ), we establish the identity f(ξ,ϕ)¼g(ξ,
ϕ) p(ξ,ϕ). Expressing this relation considering Eq. (2) and the
previous formula for g(ξ,ϕ) it is easy to show that the complex
amplitude of the required input beam is

g a i, exp , , 3ξ ϕ ξ α ξ ϕ( ) = ( ) [ ( )] ( )

and the transmittance of the phase plate is given by

p i i iq, exp exp , exp . 4ξ ϕ β ξ α ξ ϕ ϕ( ) = [ ( )] [ − ( )] ( ) ( )

According to Eq. (3), the family of beams that can be trans-
formed, using the setup of Fig. 1, into the ring vortex with the
separable form of Eq. (1), must have an amplitude dependent only
in the radial coordinate ξ. However, the phase α(ξ,ϕ) in such
beams can be an arbitrary function.

The unknown phase β(ξ) in Eq. (4) is next specified in order to
give desired attributes to the radial factor, F(r), of the RV field.
Performing the Fresnel propagation of the field f(ξ,ϕ) [Eq. (2)] to a
distance z one obtains the field h(r,θ) [Eq. (1)], whose radial factor
is (omitting constants)
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where k¼2π/λ is the wave number and Jq denotes the q-th order
Bessel function of the first kind. The integral in Eq. (5) corresponds
to the q-th order Hankel transform of the radial function a(ξ)
exp{i[β(ξ)þkξ2/2z]}.

Now, let us assume that we desire a RV with radius r0. We
determine the radial phase β(ξ) for which this focal field is opti-
mum. From Eq. (5) we can establish the RV intensity at r¼r0 as
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where fpos(ξ)¼ξ a(ξ)│Jq(2πr0ξ/λz)│ is a non-negative real function,
and ‘sgn{x}' is a binary function, equal to þ1 for xZ0, and �1
otherwise. Since the integrand in Eq. (6) is formed by the non-
negative function fpos(ξ)multiplied by phase factors, we can obtain
the relation [18]
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where the squared integral represents the upper bound value for
│F(r0)│2. It is straightforward to establish from Eq. (6) that the
intensity │F(r0)│2 achieves the upper bound value if
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Considering this result in Eq. (4) one obtains the plate phase
modulation that generates the optimal RV of radius r0, which is
given by
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The phase plate with the transmittance in Eq. (9), illuminated
by the input beam g(ξ,ϕ) [Eq. (3)], transmits the field f(ξ,ϕ)¼a(ξ)
exp(� ikξ2/2z) sgn{Jq(2πr0ξ/λz)} exp(iqϕ). Because of the quadratic
phase factor in f(ξ,ϕ), the complex amplitude of the RV, at the
distance z from the plate, is equivalent to the Fourier transform of
the function a(ξ) sgn{Jq(2πr0ξ/λz)} exp(iqϕ).

An important input field that belongs to the class defined in Eq.
(3) is the GB, whose complex amplitude can be expressed, omit-
ting factors that are independent of ξ, as

g w ik R, exp / exp /2 , 102 2 2ξ ϕ ξ ξ( ) = ( − ) ( ) ( )

where w is the beam radius and R is the curvature radius of the
quadratic phase, at the plate plane. In order to apply the general
results to the case of the input GB, it is required to replace the
amplitude and the phase in Eq. (3) by exp(�ξ2/w2), and kξ2/2 R,
respectively. Thus, the plate transmittance that transforms the
input GB in an optimal RV, with topological charge q, is
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Note that the quadratic phase factor in Eq. (11), corresponds to
the transmittance of a conventional lens, which generates the
Fourier transform of the other two factors. On the other hand, the
annular form of the focal field, with maximum peak intensity, is
allowed by the radial binary phase modulation sgn{Jq(2πr0ξ/λz)}.
This last factor, together with the azimuthal phase, in both Eq. (9)
and Eq. (11), correspond to the phase modulation of the q-th order
Bessel beam of radial spatial frequency ρ0¼r0/λz. Two illustrative
examples of the phase modulation in Eq. (11), with topological
charges q¼0 and q¼1, respectively, are depicted in Fig. 2.

Our discussion and results are connected with previous works
dealing with the so called perfect vortex [13–16], which is an infinitely
narrow RVwith arbitrary integer topological charge. It is clear that this
ideal field cannot be generated in practice. However, the optimal
physically realizable approximation to such ideal RV, employing the
optical setup in Fig. 1, is generated by the phase plate whose trans-
mittance is given by Eq. (9), for a generic beam with the complex
amplitude specified in Eq. (3), or by Eq. (11), for an input GB. Such
phase transmittances can be, in principle, fabricated by lithography on
a glass substrate. An attractive option, discussed below, is the use of a
phase liquid-crystal (LC) spatial light modulator (SLM).

3. Computational and experimental assessment of optimal RV
generators

Next we develop numerical simulations to evaluate optimal

Fig. 1. Simple setup to generate the annular focusing of a beam.

Fig. 2. Central sections in phase modulations of phase plates that generate optimal
RVs of topological charges (a) q¼0, and (b) q¼1, employing an input Gaussian
beam.
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