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a b s t r a c t

We show how to obtain optical fields possessing superoscillatory features by superposing the evanescent
tails of waves undergoing total internal reflection at a plane dielectric interface. In doing so, we essen-
tially extend the definition of superoscillations to functions expressed as a continuum of slowly decaying
exponentials, while not necessarily being bandlimited in the standard (Fourier) sense. We obtain such
functions by complexifying the argument of standard bandlimited superoscillatory functions with a
strictly positive spectrum. Combined with our recent method for superoscillations with arbitrary poly-
nomial shape, the present approach offers flexibility for locally shaping the evanescent field near di-
electric interfaces for applications such as particle or atom trapping.

& 2015 Elsevier B.V. All rights reserved.

The phenomenon of superoscillations implies the ability of
bandlimited signals to oscillate with local frequencies that are
arbitrarily larger than their maximum frequency component. This
counter-intuitive property has long intrigued physicists and en-
gineers because it enables, at least theoretically, antenna or ima-
ging systems to produce or resolve wave features much finer than
their bandwidth suggests. The earliest reports of the phenomenon
can therefore be found in classical works on superdirectivity [1]
and subdiffraction imaging [2], as well as in information and signal
theory [3,4]. The underlying idea of all these works was that ex-
tremely fine (or fast) oscillations can be obtained from appro-
priately weighted superpositions of slowly-varying functions
whose rate of variation is limited by some fundamental bandwidth
cutoff. The latter is introduced either by the operating wavelength
in radiation or imaging settings or by the response time of circuits
and systems in signal processing settings. Interestingly, the term
superoscillations itself was coined independently in quantum me-
chanics in the context of weak measurements [5] and was there-
after established when referring to such faster-than-Fourier func-
tions [6]. The interest in superoscillations and particular in su-
peroscillatory optical imaging has recently revived with a number
of promising experimental demonstrations [7,8].

Superoscillations have so far been obtained as superpositions of
propagating waves in homogeneous media. From a theoretical

viewpoint, this is due to their original definition within a space of
bandlimited functions, namely functions whose Fourier transform
has an appropriate compact support. In this context, a super-
oscillatory function f(x) is always expressible (through its inverse
Fourier transform) as a superposition of propagating waves eikx

with k being limited within a given bandwidth. From the appli-
cations viewpoint too, creating superoscillations with propagating
waves has been the major focus of research with the aim of
achieving optical superresolution without evanescent waves or,
equivalently, subwavelength focusing of light in the far field [9,10].

In this communication we consider a different question: Is it
possible to produce superoscillatory field features using as basis
functions nonpropagating evanescent waves of the form e�kx?
Before we give an answer, the concept of superoscillations within
the context of evanescent waves should first be clarified (or better,
introduced). In standard superoscillations, one considers functions
expressed as superpositions of propagating waves eikx over a finite
range of k (bandlimited functions) which can oscillate at spatial
scales s with k s a 1max ̂ª¡ , with kmax being the maximum frequency
in the spectrum. We use a similar concept for evanescent waves
e�kx. These have also a clearly defined spatial scale k�1, hence if a
superposition of such waves could oscillate locally at a scale
s ka max

1̂ª¡ − , e.g. like x ssin /π( ), this would also qualify as a super-
oscillation, in analogy to the case of propagating waves eikx. In
other words, we consider the possibility of obtaining fast oscilla-
tions (in particular, densely spaced zeros) by superposing slowly
decaying exponentials instead of slowly oscillating sines and co-
sines. This possibility can be thought of as extending the definition
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of superoscillations to functions that are amenable to a Laplace but
not necessarily to a Fourier transform (and thus may not be ban-
dlimited in the strict sense), which may be an interesting exten-
sion both from the physics and the mathematics point of view.

Specifically consider a function defined in x 0≥ through a
continuous superposition of evanescent waves with decay con-
stants k limited in some range k k,1 2[ ] as

f x F k e dk x, 0
1k

k
kx

1

2∫( ) = ( ) ≥
( )

−

where F(k) is a (generally complex) amplitude function. This
function remains undefined in x 0< hence one cannot readily
speak of its Fourier transform or its bandwidth. Of course, one can
assume that f(x) is extended to x 0< through its analytic con-
tinuation (simply by using Eq. (1) with negative x) in which case
the function becomes unbounded as x → − ∞ and thus non-
Fourier transformable. Other choices lead to a Fourier transform-
able function, such as an even or odd reflection ( f x f x( − ) = ( ) or
f x f x( − ) = − ( )) or the causal case f x 0( ) = for x 0< . Whatever
the choice, the values of f(x) in x 0< are immaterial to our
problem which is to obtain fast oscillations from a superposition
of slowly decaying exponentials. In a physical setting, as for
example when f(x) is the wave along the x-axis obtained after
total internal reflection (TIR) at an interface at x¼0, this implies
that we do not pose any restrictions on the field or the medium on
the high-index side x 0( < ) other than it must produce the desired
f(x) in x 0> .

Hence the question is whether a function of the type defined in
Eq. (1) can actually oscillate at small spatial scales, namely super-
oscillate. The answer is obtained by associating f(x) with the
analytic continuation of a bandlimited function Φ ξ( ) (of the real
variable ξ) whose Fourier transform is supported on k k,1 2[ ] and
equals F(k). Such a function is expressed as

F k e dk, real
2k

k
ik

1

2∫Φ ξ ξ( ) = ( )
( )

ξ

According to the Paley–Wiener theorem [11], the complex function
zΦ ( ), that is obtained from Eq. (2) by complexifying the argument

ξ to z iξ η= + , is an entire function (of exponential type, namely
there exists C 0> such that g z Cek z2| ( ) | ≤ | |). Therefore, we can
obtain from Eq. (2) analytic functions f(x) of a real variable x by
letting z run along any smooth curve z(x) on the complex plane.
Notice that, for a general path z(x), these functions will be free of
singularities but not necessarily square integrable (square integr-
ability is guaranteed by the Paley–Wiener theorem only for paths
parallel to the real axis [11]). In particular, if we restrict z to the
imaginary axis z ix( = ), a propagating wave eikξ turns into an
evanescent wave e�kx and Eq. (2) gives the f(x) of Eq. (1) in x 0≥ ,
namely

f x ix x, 0 3Φ( ) = ( ) ≥ ( )

We have therefore reached an important conclusion. A f(x)
defined through Eq. (1) can be viewed as the restriction to the
positive imaginary axis of an entire function zΦ ( ), whose restric-
tion to the real axis Φ ξ( ) has the Fourier transform F(k) supported
on k k,1 2[ ]. And by the uniqueness of an analytic continuation, the
complex analytic function zΦ ( ) satisfying Eq. (3) is unique. In this
way, the oscillations of f(x) are mapped to oscillations of zΦ ( )
along the positive imaginary axis. These oscillations can in turn be
controlled by the zeros of zΦ ( ). And here is where a remarkable
property of entire functions applies. The zeros of entire functions

zΦ ( ), which are defined as the extension in the complex plane of a
bandlimited function Φ ξ( ), can be placed arbitrarily close to each
other no matter how small is the maximum frequency contained
in Φ ξ( ) [12]. In our case of Φ ξ( ) defined as in Eq. (2), this maximum

frequency is k2. This property of entire functions has also been
used in the past to produce standard superoscillatory functions
[13,14]. One can therefore construct zΦ ( ) to have a set of densely
spaced zeros along the positive imaginary axis, z ixn n= , x 0n ≥ ,
n 1, 2, ,= … to obtain a function f x ixΦ( ) = ( ) having densely
spaced zeros at x xn= . We have therefore shown that f(x) can
indeed superoscillate in the aforementioned sense.

Let us illustrate the above with an example. Consider the entire
function

z
z is z is z is

z z z
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sinc
4

i zΦ ( ) = ( − )( − )( − )
( − )( − )( − )

( )
( )

δ

where s a 1̂ª¡ , δ π> and z z zsinc sin /π π( ) = ( ) ( ). The logic behind this
zΦ ( ) is, firstly, to replace the three zeros of the entire function

zsinc( ) at z 1, 2, 3= by three closely spaced zeros along the ima-
ginary axis at z is is is, 2 , 3= . The new function is also entire and of
the same exponential order e zπ | | with zsinc( ) hence, according to
the zero-replacement theorem [14], its restriction to the real axis
has the same bandwidth (2π) with sinc ξ( ). Secondly, the expo-
nential factor ei zδ of zΦ ( ) becomes on the real axis the phase factor
eiδξ which serves to shift the spectrum of Φ ξ( ) from ,π π[ − ] to the
strictly positive wavenumbers ,δ π δ π[ − + ]. Now, according to our
previous discussion, the restriction of zΦ ( ) to the positive
imaginary axis, i.e.,

f x ix
x s x s x s
x i x i x i

x
x

e x
2 3
2 3
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, 0
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π
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( ) ≥
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δ−

is a function that is expressible as in Eq. (1) with k1 δ π= − and
k2 δ π= + and with F(k) being the Fourier transform of Φ ξ( ).
Moreover f(x) superoscillates at the (arbitrarily small) scale s due
to the three zeros at x s s s, 2 , 3= . Note also the decay of
f x e x/x( ) ∼ π δ( − ) as x → + ∞. An example of this f(x) is shown in
Fig. 1(a) for s¼0.1 and δ¼1.5π. Here s has been deliberately chosen
large for illustration purposes. The corresponding complex ampli-
tude function F(k) follows by numerically computing the Fourier
transform of the Φ ξ( ) of Eq. (4) (using the inverse to Eq. (2)
relation) and is shown in Fig. 1(b).

The design of superoscillations using evanescent waves has
therefore been reduced to the design of standard bandlimited
superoscillatory functions with a strictly positive spectrum. There
are two general methods available in the literature for construct-
ing standard superoscillatory functions, apart from the zero-re-
placement theorem that we have just used. The first method ex-
presses the function as a finite sum of sinc functions with coeffi-
cients that are determined by imposing a set of amplitude or de-
rivative constraints over a finite grid of closely spaced points [15–
17]. The second method uses similar constraints but the super-
oscillatory function is expressed as a Fourier integral and a mini-
mum-energy solution is sought using variational techniques
[18,19]. These methods have a discrete logic in the sense that the
superoscillatory function is constrained over a discrete set of
points. This however implies some lack of control over the actual
shape of the superoscillatory curve across the interval that con-
tains these points (superoscillatory interval).

Towards a continuous design of superoscillations, we have re-
cently proposed a simple method for creating superoscillations
that mimic a given polynomial with arbitrarily high precision
within some finite interval [20]. Such superoscillatory functions
are obtained as the product of the target polynomial with a ban-
dlimited envelope function whose Fourier transform has at least
N�1 continuous derivatives and a Nth derivative of bounded
variation, with N being the order of the polynomial. For example
consider the entire function
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