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a b s t r a c t

We consider light scattering by uniform spheres of arbitrary size R and refractive index m. A new internal
coupling parameter kR m m2 1 / 22 2ρ = ( − ) ( + )′ where k 2 /π λ= and λ is the wavelength is proposed that
has a superior ability to determine the asymptotic regimes of small size, weakly refractive and large size,
refractive than the parameter kR m2 1ρ = ( − ). It also has superior ability as a parameter to organize
patterns in light scattering from spheres.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Mie solution for how electromagnetic radiation such as
light scatters from spheres of arbitrary size and refractive index
was presented more than 100 years ago [1]. The physical problem
of light scattering has two limits: the small size or weakly re-
fractive limit in which the scattering is described by three-di-
mensional Fraunhofer diffraction; and the large size, refractive
limit in which scattering is described by two-dimensional Fraun-
hofer diffraction from the projected geometric cross section of the
object. Given this physical perspective, we expect that the Mie
solution will yield these two diffraction patterns in their corre-
sponding limits. The purpose of this paper is to establish the
correct parameter to quantitatively determine the limits of either
small size or weakly refractive or large size and refractive. We will
refer to these as the Rayleigh–Debye–Gans (RDG) and geometric
limits, respectively.

2. Analysis

To study the scattering we will examine the angular depen-
dence of the scattered intensity, I. From this perspective, it is very
useful to forgo the usual scattering angle θ functionality and use
instead the magnitude of the scattering wave vector [2–4]

q k2 sin /2 1θ= ( ) ( )

where k¼2π/λ and λ is the wavelength of light. We have come to

call the method of plotting the scattered intensity versus q on a
double logarithmic plot “Q-space analysis” [4].

The RDG (small size or weakly refractive) limit for Mie scat-
tering can be quantitatively specified by the so-called phase shift
parameter

kR m2 1 2ρ = ( − ) ( )

For a sphere of any radius R and refractive index m, experien-
cing an incident intensity of unity, under the condition 0ρ → , the
RDG scattered intensity is [5–7]
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We use the term “IR” for the scattering that would come from a
particle in the Rayleigh limit, kR 1≪ and m kR 1≪ . It is identical
to the forward scattering intensity I I0 R( ) = whenever 0ρ → .
When 1ρ > , the full Mie result becomes necessary.

Note that the refractive index functionality is the square of the
Lorentz–Lorenz term which is the dynamic embodiment of the
Clausius–Mossotti relation [8]. Equations (3) through (5) describe
the Fraunhofer diffraction from a three-dimensional sphere.

The physical basis for the RDG limit is that the scattering par-
ticle’s interior field becomes the incident field. Then in this limit
each sub-volume dV of the particle acts like a Rayleigh scatterer
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scattering with a scattered field proportional to the incident field
and m m dV1 / 22 2[( − ) ( + )] . In the forward direction all these fields
add in phase to yield IR, the first term in Eq. (3). At other angles,
phase differences lead to the second term in Eq. (3). Important for
this limit, however, is that these sub-volumes are affected by only
the incident field and not the scattered fields from the rest of the
particle. Said differently, the internal coupling between different
parts of the particle is weak.

This physical basis lies at the foundation of the argument
presented by van de Hulst who, in section 6.22 of his book [5],
assumed the polarization of a solid particle induced by an applied
electric field does not affect the interior field of the particle in the
m 1→ limit. Had he allowed the induced polarization to feed back
to the particle the well-known Clausius–Mossotti relation would
have been obtained. Subsequently, at the beginning of chapter 7,
he introduces the expression for ρ as the governing parameter to
determine when the RDG limit applies. Note that the Lorentz–
Lorenz term reduces to the m�1 functionality of ρ in the m 1→
limit. It is also here that he uses the term “phase shift”, but it is not
until section 10.1 that he states that ρ is equal to the phase dif-
ference between a wave passing through a diameter of the particle
and one traveling the same distance outside the particle. Kerker, in
chapter 8 of his book [6], explicitly writes the coupling fields from
particle sub-volumes in terms of the Lorentz–Lorenz relation, but
before he applies that, he makes the approximation m 1→ and, as
for van de Hulst, claims that ρ is the governing parameter to de-
termine the small size, weakly refractive limit.

In light of this history and given the physical basis for the RDG
limit, it is worthwhile to ask if a modified parameter based on the
Clausius–Mossotti/Lorentz–Lorenz relations might be a more ap-
propriate parameter to describe the limits of Mie scattering. This
question is answered by considering the other limit of a large,
refractive particle, the geometric limit.

For a circular obstacle of radius R and “sufficiently large” (a
term to be described below) refractive index, experiencing an in-
cident intensity of unity, the Fraunhofer diffraction pattern is [9]
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In Eq. (6) J1(u) is the first Bessel function of the first kind. We
expect that this is also the scattering from a sphere in the geo-
metric limit. This has been recently demonstrated for the Mie
formulation [10]. Then the forward scattering is I k R0 /42 4( ) = .

In the previous work [3] we have shown that for spheres with
10ρ ≥ the forward scattering goes as

I I0 3 / 7R
2ρ( ) ≃ ( )

We have also studied the approach of Mie scattering to the
geometric, two-dimensional Fraunhofer limit at large ρ [10]. In
principle, the forward scattering at extremely large ρ should be
identical to the two-dimensional result, the first term of Eq. (6),
I k R0 /42 4( ) = . However, Eq. (7) is incapable of achieving this limit
because the refractive index functionalities do not cancel. If,
however, one defines a modified phase shift parameter, ρ′, such
that
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then no refractive index dependency remains and Eq. (7) can be
modified to

I I0 / 9R
2ρ( ) = ′ ( )

for 10ρ′ ≥ . This yields the desired result I k R0 /42 4( ) = .
Since ρ′ is derived using the Lorentz–Lorenz term which is a

measure of how strong the internal coupling between different
sub-volumes of the particle is, we henceforth call ρ’ the “internal
coupling parameter”.

3. Tests of the analysis

Scattering data were calculated using Philip Laven's freeware
program MiePlot [11]. MiePlot is a simple yet robust interface built
to use the Bohren and Huffman algorithm for Mie scattering.

Fig. 1a shows plots of the forward scattered intensity, I(0),
normalized by the Rayleigh scattered intensity, Eq. (4), (which we
will refer to as the “Rayleigh normalized forward scattering in-
tensity”) versus the phase shift parameter ρ. A quasi-universal
dependence on ρ is seen despite the wide variation on the re-
fractive index [3]. This supports the contention of Eq. (7). In con-
trast Fig. 1b plots the Rayleigh normalized forward scattering in-
tensity versus the internal coupling parameter ρ’. Now, at large ρ′,
all the plots fall together on the same line. More resolution for this
comparison can be gained by multiplying the Rayleigh normalized
scattering intensity by either ρ2 or ρ′2 as done in Fig. 1c and d,
respectively. While Fig. 1c shows differences on the order of a
factor of 2 at large ρ, the plots using ρ’ in Fig. 1d fall accurately
together at large ρ′. These results support the contention that ρ′ is
an accurate parameter to determine when Mie scattering is en-
tering the large size, refractive regime. They also indicate that ρ′
can be used to unify quantitatively the forward scattering in that
regime to a single description.

In previous work ρ was shown to provide a quasi-universal
description of the entire Mie scattering angular dependence of the
scattered intensity. We now test the new parameter ρ′ for a similar
description and compare it to ρ in Fig. 2. There we find the Ray-
leigh normalized scattering intensity plotted versus qR on a log–
log plot; a method we call Q-space analysis [4]. The intensities
have been averaged over a lognormal size distribution with geo-
metric standard deviation of 1.2 to remove the ripple structure.
This leaves smooth curves that represent the general functional-
ities of the scattering. Fig. 2a shows that for a given ρ value, the
curves show approximately the same functional dependence de-
spite the wide range of sizes and refractive indices. On the other
hand, the plots for the two different ρ values are distinctively
different. This is the quasi-universality with ρ as the organizing
parameter alluded to above. In contrast Fig. 2b shows that for a
given ρ′ value the curves overlap much more closely than for ρ.
This implies that the patterns unveiled by Q-space analysis for Mie
scattering are well parameterized by the internal coupling para-
meter ρ′ and this provides a better organization than the phase
shift parameter ρ. We conclude that spheres with the same value
of ρ′ exhibit very similar scattering regardless of size R and re-
fractive index m. However, return to Fig. 1 for the 1 10ρ< < range
where crossover ripples dominate. In this range ρ appears to co-
ordinate the phase of the ripples better than ρ′.

Fig. 3(a) /32ρ and 2ρ′ versus m with 2kR¼1. (b) The ratio be-
tween /32ρ and 2ρ′ versus m.

4. Conclusion

Because the Mie equations for scattering by an arbitrary sphere
are based on the fundamental Maxwell equations, it should con-
tain diffraction by both a three-dimensional sphere and by a two-
dimensional circular object in the RDG and geometric limits, re-
spectively, and indeed the equations do. The physical basis for the
RDG limit is that the particle’s internal field is not affected by in-
ternal coupling between different parts of the particle; hence the
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